Skip to main content

Caspase-3 Activation Is a Critical Determinant of Genotoxic Stress-Induced Apoptosis

  • Protocol
  • First Online:
Apoptosis and Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1219))

Abstract

Apoptosis can be measured by number of methods by taking advantage of the morphological, biochemical, and molecular changes undergoing in a cell during this process. The best recognized biochemical hallmark of both early and late stages of apoptosis is the activation of cysteine proteases (caspases). Detection of active caspase-3 in cells and tissues is an important method for apoptosis induced by a wide variety of apoptotic signals. Most common assays for examining caspase-3 activation include immunostaining, immunoblotting for active caspase-3, colorimetric assays using fluorochrome substrates, as well as employing the fluorescein-labeled CaspaTag pan-caspase in situ detection kit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147:742–758

    Article  PubMed  CAS  Google Scholar 

  2. Autret A, Martin SJ (2009) Emerging role for members of the Bcl-2 family in mitochondrial morphogenesis. Mol Cell 36:355–363

    Article  PubMed  CAS  Google Scholar 

  3. Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59

    Article  PubMed  CAS  Google Scholar 

  4. Chen Q, Gong B, Almasan A (2000) Distinct stages of cytochrome c release from mitochondria: evidence for a feedback amplification loop linking caspase activation to mitochondrial dysfunction in genotoxic stress induced apoptosis. Cell Death Differ 7:227–233

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Gong B, Almasan A (2000) Apo2 ligand/TNF-related apoptosis-inducing ligand and death receptor 5 mediate the apoptotic signaling induced by ionizing radiation in leukemic cells. Cancer Res 60:5754–5760

    PubMed  CAS  Google Scholar 

  6. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  PubMed  CAS  Google Scholar 

  7. Kumar S (1999) Mechanisms mediating caspase activation in cell death. Cell Death Differ 6:1060–1066

    Article  PubMed  CAS  Google Scholar 

  8. Walker NP, Talanian RV, Brady KD, Dang LC, Bump NJ, Ferenz CR et al (1994) Crystal structure of the cysteine protease interleukin-1 beta-converting enzyme: a (p20/p10)2 homodimer. Cell 78:343–352

    Article  PubMed  CAS  Google Scholar 

  9. Rotonda J, Nicholson DW, Fazil KM, Gallant M, Gareau Y, Labelle M et al (1996) The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nat Struct Biol 3:619–625

    Article  PubMed  CAS  Google Scholar 

  10. Wilson KP, Black JA, Thomson JA, Kim EE, Griffith JP, Navia MA et al (1994) Structure and mechanism of interleukin-1 beta converting enzyme. Nature 370:270–275

    Article  PubMed  CAS  Google Scholar 

  11. Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-Calvo M et al (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 272:17907–17911

    Article  PubMed  CAS  Google Scholar 

  12. Fischer U, Janicke RU, Schulze-Osthoff K (2003) Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ 10:76–100

    Article  PubMed  CAS  Google Scholar 

  13. Gong B, Chen Q, Endlich B, Mazumder S, Almasan A (1999) Ionizing radiation-induced, Bax-mediated cell death is dependent on activation of cysteine and serine proteases. Cell Growth Differ 10:491–502

    PubMed  CAS  Google Scholar 

  14. Mazumder S, Chen Q, Gong B, Drazba JA, Buchsbaum JC, Almasan A (2002) Proteolytic cleavage of cyclin E leads to inactivation of associated kinase activity and amplification of apoptosis in hematopoietic cells. Mol Cell Biol 22:2398–2409

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Mazumder S, Gong B, Almasan A (2000) Cyclin E induction by genotoxic stress leads to apoptosis of hematopoietic cells. Oncogene 19:2828–2835

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Mazumder S, Plesca D, Kinter M, Almasan A (2007) Interaction of a cyclin E fragment with Ku70 regulates Bax-mediated apoptosis. Mol Cell Biol 27:3511–3520

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Plesca D, Mazumder S, Gama V, Matsuyama S, Almasan A (2008) A C-terminal fragment of Cyclin E, generated by caspase-mediated cleavage, is degraded in the absence of a recognizable phosphodegron. J Biol Chem 283:30796–30803

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Mazumder S, Choudhary GS, Al-Harbi S, Almasan A (2012) Mcl-1 Phosphorylation defines ABT-737 resistance that can be overcome by increased NOXA expression in leukemic B cells. Cancer Res 72:3069–3079

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Sharma A, Singh K, Mazumder S, Hill BT, Kalaycio M, Almasan A (2013) BECN1 and BIM interactions with MCL-1 determine fludarabine resistance in leukemic B cells. Cell Death & Disease 4:e628

    Article  CAS  Google Scholar 

  20. Plesca D, Mazumder S, Almasan A (2008) DNA damage response and apoptosis. Methods Enzymol 446:107–122

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Surova O, Zhivotovsky B (2013) Various modes of cell death induced by DNA damage. Oncogene 32:3789–3797

    Article  PubMed  CAS  Google Scholar 

  22. Gong B, Chen Q, Endlich B, Mazumder S, Almasan A (1999) Ionizing radiation-induced, Bax-mediated cell death is dependent on activation of serine and cysteine proteases. Cell Growth Diff 10:491–502

    PubMed  CAS  Google Scholar 

  23. Chatterjee P, Choudhary GS, Sharma A, Singh K, Heston WD, Ciezki J et al (2013) PARP inhibition sensitizes to low dose-rate radiation TMPRSS2-ERG fusion gene-expressing and PTEN-deficient prostate cancer cells. PLoS One 8:e60408

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Ray S, Almasan A (2003) Apoptosis induction in prostate cancer cells and xenografts by combined treatment with Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand and CPT-11. Cancer Res 63:4713–4723

    PubMed  CAS  Google Scholar 

  25. Masri SC, Yamani MH, Russell MA, Ratliff NB, Yang J, Almasan A et al (2003) Sustained apoptosis in human cardiac allografts despite histologic resolution of rejection. Transplantation 76:859–864

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a research grant from the National Institutes of Health to A.A. (CA127264).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru Almasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Choudhary, G.S., Al-harbi, S., Almasan, A. (2015). Caspase-3 Activation Is a Critical Determinant of Genotoxic Stress-Induced Apoptosis. In: Mor, G., Alvero, A. (eds) Apoptosis and Cancer. Methods in Molecular Biology, vol 1219. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1661-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1661-0_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1660-3

  • Online ISBN: 978-1-4939-1661-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics