Skip to main content

Grapevine (Vitis vinifera L.)

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1224))

Abstract

Grapevine (Vitis) is considered to be one of the major fruit crops in the world based on hectares cultivated and economic value. Grapes are used not only for wine but also for fresh fruit, dried fruit, and juice production. Wine is by far the major product of grapes, and the focus of this chapter is on wine grape cultivars. Grapevine cultivars of Vitis vinifera L. have a reputation for producing premium quality wines. These premium quality wines are produced from a small number of cultivars that enjoy a high level of consumer acceptance and are firmly entrenched in the market place because of varietal name branding and the association of certain wine styles and regions with specific cultivars. In light of this situation, grapevine improvement by a transgenic approach is attractive when compared to a classical breeding approach. The transfer of individual traits as single genes with a minimum disruption to the original genome would leave the traditional characteristics of the cultivar intact. However, a reliable transformation system is required for a successful transgenic approach to grapevine improvement. There are three criteria for achieving an efficient Agrobacterium-mediated transformation system: (1) the production of highly regenerative transformable tissue, (2) optimal cocultivation conditions for both grapevine tissue and Agrobacterium, and (3) an efficient selection regime for transgenic plant regeneration. In this chapter, we describe a grapevine transformation system that meets these criteria. We also describe a protocol for the production of transformed roots suitable for functional gene studies and for the production of semi-transgenic grafted plants.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mullins MG, Bouquet A, Williams LE (1992) Biology of grapevine. Cambridge University Press, Cambridge

    Google Scholar 

  2. Kikkert JR, Thomas MR, Reisch BI (2001) Grapevine genetic engineering. In: Roubelakis-Angelakis KA (ed) Molecular biology and biotechnology of the grapevine. Kluwer, Dordrecht, pp 393–410

    Chapter  Google Scholar 

  3. Bouquet A, Chatelet P, Torregrosa L (2003) Grapevine genetic engineering: tool for genome analysis or plant breeding method? Which future for transgenic vines? AgBiotechNet 5 ABN 116:1–10

    Google Scholar 

  4. Colova-Tsolova V, Perl A, Krastanova S, Tsvetkov I, Atanassov A (2001) Genetically engineered grape for disease and stress tolerance. In: Roubelakis-Angelakis KA (ed) Molecular biology and biotechnology of the grapevine. Kluwer, Dordrecht, pp 411–432

    Chapter  Google Scholar 

  5. Mullins MG, Tang FCA, Facciotti D (1990) Agrobacterium-mediated genetic transformation of grapevines. Transgenic plants of Vitis rupestris Scheele and buds of Vitis vinifera L. Nat Biotechnol 8:1041–1045

    Article  CAS  Google Scholar 

  6. Perl A, Colova-Tsolova V, Eshdat Y (2004) Agrobacterium-mediated transformation of grape embryogenic calli. In: Curtis IS (ed) Transgenic crops of the world. Kluwer, Dordrecht, pp 1–14

    Google Scholar 

  7. Colby SM, Juncosa AM, Meredith CP (1991) Cellular differences in Agrobacterium susceptibility and regenerative capacity restrict the development of transgenic grapevines. J Am Soc Hort Sci 116:356–361

    Google Scholar 

  8. Mezzetti B, Pandolfini T, Navacchi O, Landi L (2002) Genetic transformation of Vitis vinifera via organogenesis. BMC Biotechnol 2:18–28

    Article  PubMed Central  PubMed  Google Scholar 

  9. Martinelli L, Gribaudo I (2001) Somatic embryogenesis in grapevine. In: Roubelakis-Angelakis KA (ed) Molecular biology and biotechnology of the grapevine. Kluwer, Dordrecht, pp 327–351

    Chapter  Google Scholar 

  10. Le Gall O, Torregrosa L, Danglot Y, Candresse T, Bouquet A (1994) Agrobacterium-mediated genetic transformation of grapevine somatic embryos and regeneration of transgenic plants expressing the coat protein of grapevine chrome mosaic nepovirus (GCMV). Plant Sci 102:161–170

    Article  Google Scholar 

  11. Perl A, Lotan O, Abu-Abied M, Holland D (1996) Establishment of an Agrobacterium-mediated transformation system for grape (Vitis vinifera L.): the role of antioxidants during grape-Agrobacterium interactions. Nat Biotechnol 14:624–628

    Article  CAS  PubMed  Google Scholar 

  12. Franks T, Gang He D, Thomas M (1998) Regeneration of transgenic Vitis vinifera L. Sultana plants: genotypic and phenotypic analysis. Mol Breeding 4:321–333

    Article  CAS  Google Scholar 

  13. Chaib J, Torregrosa L, Mackenzie D, Corena P, Bouquet A, Thomas MR (2010) The microvine – a model system for rapid forward and reverse genetics of grapevines. Plant J 61:1083–1092

    Google Scholar 

  14. Reustle GM, Wallbraun M, Zwiebel M et al (2002) Experience with different selectable marker systems for the genetic engineering of grapevine. Acta Hort 603:485–490

    Google Scholar 

  15. Torregrosa L, Péros J-P, Lopez G, Bouquet A (2000) Effect of hygromycin, kanamycin and phosphinothricin on the embryogenic development and axillary micropropagation of Vitis vinifera L. Acta Hort 528:401–406

    CAS  Google Scholar 

  16. Kieffer F, Triouleyre C, Bertsch C, Farine S, Leva Y, Walter B (2004) Mannose and xylose cannot be used as selectable agents for Vitis vinifera L. Vitis 43:35–39

    CAS  Google Scholar 

  17. Torregrosa L (1998) A simple and efficient method to obtain stable embryogenic cultures from anthers of Vitis vinifera L. Vitis 37:91–92

    Google Scholar 

  18. Iocco P, Franks T, Thomas MR (2001) Genetic transformation of major wine grape cultivars of Vitis vinifera L. Transgenic Res 10:105–112

    Article  CAS  PubMed  Google Scholar 

  19. Torregrosa L, Iocco P, Thomas MR (2002) Influence of Agrobacterium strain, culture medium, and cultivar on the transformation efficiency of Vitis vinifera L. Am J Enol Vitic 53:183–190

    CAS  Google Scholar 

  20. Bowers J, Boursiquot J-M, This P, Chu K, Johansson H, Meredith C (1999) Historical genetics: the parentage of Chardonnay, Gamay and other wine grapes of Northeastern France. Science 285:1562–1565

    Article  CAS  PubMed  Google Scholar 

  21. Torregrosa L, Bouquet A (1997) Agrobacterium tumefaciens and A. rhizogenes co-transformation to obtain grapevine hairy roots producing the coat protein of grapevine chrome mosaic nepovirus. Plant Cell Tiss Org Cult 49:53–62

    Article  CAS  Google Scholar 

  22. Vidal JR, Gomez C, Cutanda MC, Shrestha B, Bouquet A, Thomas MR, Torregrosa L (2010) Use of gene transfer technology for functional studies in grapevine. Aust J Grape Wine Res 16:138–151

    Article  CAS  Google Scholar 

  23. Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  24. Tepfer D (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37:959–967

    Article  CAS  PubMed  Google Scholar 

  25. Cutanda-Perez MC, Ageorges A, Gomez C, Vialet S, Romieu C, Torregrosa L (2009) Ectopic expression of the VlmybA1 in grapevine activates a narrow set of genes involved in anthocyanin synthesis and transport. Plant Mol Biol 69:633–648

    Article  CAS  PubMed  Google Scholar 

  26. Garfinkel DJ, Nester EW (1980) Agrobacterium mutants affected in crown gall tumorigenesis and octopine catabolism. J Bacteriol 144:732–743

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Chilton MD, Currier TC, Farrand SK, Bendish AJ, Gordon MP, Nester EW (1974) Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. Proc Natl Acad Sci U S A 71:3672–3676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  29. Nitsch J-P, Nitsch C (1969) Haploid plants from pollen grains. Science 165:85–87

    Article  Google Scholar 

  30. Galzy R, Haffner V, Compan D (1990) Influence of three factors on the growth and nutrition of grapevine microcuttings. J Exp Bot 41:295–301

    Article  Google Scholar 

  31. Torregrosa L, Torres-Viñals M, Bouquet A (1995) Somatic embryogenesis from leaves of Vitis x Muscadinia hybrids. Vitis 34:239–240

    Google Scholar 

  32. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:1515–1518

    Article  Google Scholar 

  33. Torregrosa L, Bouquet A (1996) Adventitious bud formation and shoot development from in vitro leaves of Vitis x Muscadinia hybrids. Plant Cell Tiss Org Cult 45:245–251

    Article  CAS  Google Scholar 

  34. Mullins MG (1966) Test-plants for investigations of physiology of fruiting in Vitis vinifera L. Nature 209:419–420

    Article  Google Scholar 

  35. Martinelli L, Mandolino G (2001) Transgenic grapes (Vitis species). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 47, transgenic crops II. Springer, Berlin, pp 325–338

    Google Scholar 

  36. Legrand V, Dalmayrac S, Latché A et al (2003) Constitutive expression of Vr-ERE gene in transformed grapevines confers enhanced resistance to eutypine, a toxin from Eutypa lata. Plant Sci 164:809–814

    Article  CAS  Google Scholar 

  37. Motoike SY, Skirvin RM, Norton MA, Otterbacher AG (2002) Development of methods to genetically transform American grape (Vitis × labruscana L.H. Bailey). J Hort Sci Biotechnol 77:691–696

    Google Scholar 

  38. Mauro M-C, Toutain S, Walter B et al (1995) High efficiency regeneration of grapevine plants transformed with the GFLV coat protein gene. Plant Sci 112:97–106

    Article  CAS  Google Scholar 

  39. Bouquet A, Torregrosa L (2003) Micropropagation of the grapevine. In: Jain SM, Ishii K (eds) Micropropagation of woody trees and fruits. Kluwer, Dordrecht, pp 319–352

    Chapter  Google Scholar 

  40. Torregrosa L, Bouquet A, Goussard PG (2001) In vitro culture and propagation of grapevine. In: Roubelakis-Angelakis KA (ed) Molecular biology and biotechnology of the grapevine. Kluwer, Dordrecht, pp 281–326

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Torregrosa, L., Vialet, S., Adivèze, A., Iocco-Corena, P., Thomas, M.R. (2015). Grapevine (Vitis vinifera L.). In: Wang, K. (eds) Agrobacterium Protocols. Methods in Molecular Biology, vol 1224. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1658-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1658-0_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1657-3

  • Online ISBN: 978-1-4939-1658-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics