Skip to main content

Conversion of BAC Clones into Binary BAC (BIBAC) Vectors and Their Delivery into Basidiomycete Fungal Cells Using Agrobacterium tumefaciens

  • Protocol
  • First Online:
Bacterial Artificial Chromosomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1227))

Abstract

The genetic transformation of certain organisms, required for gene function analysis or complementation, is often not very efficient, especially when dealing with large gene constructs or genomic fragments. We have adapted the natural DNA transfer mechanism from the soil pathogenic bacterium Agrobacterium tumefaciens, to deliver intact large DNA constructs to basidiomycete fungi of the genus Ustilago where they stably integrated into their genome. To this end, Bacterial Artificial Chromosome (BAC) clones containing large fungal genomic DNA fragments were converted via a Lambda phage-based recombineering step to Agrobacterium transfer-competent binary vectors (BIBACs) with a Ustilago-specific selection marker. The fungal genomic DNA fragment was subsequently successfully delivered as T-DNA through Agrobacterium-mediated transformation into Ustilago species where an intact copy stably integrated into the genome. By modifying the recombineering vector, this method can theoretically be adapted for many different fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T, Tachiiri Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci U S A 89:8794–8797

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Hosoda F, Nishimura S, Uchida H, Ohki M (1990) An F factor based cloning system for large DNA fragments. Nucleic Acids Res 18:3863–3869

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Nagano Y, Takao S, Kudo T, Iizasa E, Anai T (2007) Yeast-based recombineering of DNA fragments into plant transformation vectors by one-step transformation. Plant Cell Rep 26:2111–2117

    Article  PubMed  CAS  Google Scholar 

  4. Lee EC, Yu D, Martinez de Velasco J, Tessarollo L, Swing DA, Court DL, Jenkins NA, Copeland NG (2001) A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73:56–65

    Article  PubMed  CAS  Google Scholar 

  5. Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, Court DL (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci U S A 97:5978–5983

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Muniyappa K, Radding C (1986) The homologous recombination system of phage lambda. Pairing activities of beta protein. J Biol Chem 261:7472–7478

    PubMed  CAS  Google Scholar 

  7. Copeland NG, Jenkins NA, Court DL (2001) Recombineering: a powerful new tool for mouse functional genomics. Nat Rev Genet 2:769–779

    Article  PubMed  CAS  Google Scholar 

  8. Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas PJ (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14:3206–3214

    PubMed  CAS  PubMed Central  Google Scholar 

  9. Ali S, Bakkeren G (2011) Introduction of large DNA inserts into the barley pathogenic fungus. Ustilago hordei, via recombined binary BAC vectors and Agrobacterium-mediated transformation. Curr Genet 57:63–73

    Article  PubMed  CAS  Google Scholar 

  10. Hamilton CM, Frary A, Lewis C, Tanksley SD (1996) Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc Natl Acad Sci U S A 93:9975–9979

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Lee L-Y, Gelvin SB (2008) T-DNA binary vectors and systems. Plant Physiol 146:325–332

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG (2005) Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 33:e36

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li Z, Karakousis G, Chiu S, Reddy G, Radding C (1998) The beta protein of phage λ promotes strand exchange. J Mol Biol 276:733–744

    Article  PubMed  CAS  Google Scholar 

  14. Kulkarni SK, Stahl FW (1989) Interaction between the sbcC gene of Escherichia coli and the gam gene of phage lambda. Genetics 123:249–253

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Murphy KC (2007) The λ Gam protein inhibits RecBCD binding to dsDNA ends. J Mol Biol 371:19–24

    Article  PubMed  CAS  Google Scholar 

  16. Takken FL, Van Wijk R, Michielse CB, Houterman PM, Ram AF, Cornelissen BJ (2004) A one-step method to convert vectors into binary vectors suited for Agrobacterium-mediated transformation. Curr Genet 45:242–248

    Article  PubMed  CAS  Google Scholar 

  17. Linning R, Lin D, Lee N, Abdennadher M, Gaudet D, Thomas P, Mills D, Kronstad JW, Bakkeren G (2004) Marker-based cloning of the region containing the UhAvr1 avirulence gene from the basidiomycete barley pathogen Ustilago hordei. Genetics 166:99–111

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Wang J, Holden DW, Leong SA (1988) Gene transfer system for the phytopathogenic fungus Ustilago maydis. Proc Natl Acad Sci U S A 85:865–869

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Chen X, Stone M, Schlagnhaufer C, Romaine CP (2000) A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl Environ Microbiol 66:4510–4513

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Mikosch TSP, Lavrijssen B, Sonnenberg ASM, van Griensven LJLD (2001) Transformation of the cultivated mushroom Agaricus bisporus (Lange) using T-DNA from Agrobacterium tumefaciens. Curr Genet 39:35–39

    Article  PubMed  CAS  Google Scholar 

  21. Meyer V, Mueller D, Strowig T, Stahl U (2003) Comparison of different transformation methods for Aspergillus giganteus. Curr Genet 43:371–377

    Article  PubMed  CAS  Google Scholar 

  22. Degefu Y, Hanif M (2003) Agrobacterium- tumefaciens-mediated transformation of Helminthosporium turcicum, the maize leaf-blight fungus. Arch Microbiol 180:279–284

    Article  PubMed  CAS  Google Scholar 

  23. Michielse CB, Hooykaas PJJ, van den Hondel CAMJJ, Ram AFJ (2005) Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 48:1–17

    Article  PubMed  CAS  Google Scholar 

  24. Mullins ED, Chen X, Romaine P, Raina R, Geiser DM, Kang S (2001) Agrobacterium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology 91: 173–180

    Article  PubMed  CAS  Google Scholar 

  25. Combier JP, Melayah D, Raffier C, Gay G, Marmeisse R (2003) Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum. FEMS Microbiol Lett 220:141–148

    Article  PubMed  CAS  Google Scholar 

  26. Takahara H, Tsuji G, Kubo Y, Yamamoto M, Toyoda K, Inagaki Y, Ichinose Y, Shiraishi T (2004) Agrobacterium tumefaciens-mediated transformation as a tool for random mutagenesis of Colletotrichum trifolii. J Gen Plant Pathol 70:93–96

    Article  CAS  Google Scholar 

  27. Frary A, Hamilton CM (2001) Efficiency and stability of high molecular weight DNA transformation: an analysis in tomato. Transgenic Res 10:121–132

    Article  PubMed  CAS  Google Scholar 

  28. Kronstad JW, Leong SA (1989) Isolation of two alleles of the b locus of Ustilago maydis. Proc Natl Acad Sci U S A 86:978–982

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Holliday R (1974) Ustilago maydis. In: King RC (ed) Handbook of genetics. Plenum, New York, pp 575–595

    Google Scholar 

  30. Elder RT, Loh EY, Davis RW (1983) RNA from the yeast transposable element Ty1 has both ends in the direct repeats, a structure similar to retrovirus RNA. Proc Natl Acad Sci U S A 80:2432–2436

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Almeida AJ, Carmona JA, Cunha C, Carvalho A, Rappleye CA, Goldman WE, Hooykaas PJ, Leao C, Ludovico P, Rodrigues F (2007) Towards a molecular genetic system for the pathogenic fungus Paracoccidioides brasiliensis. Fungal Genet Biol 44:1387–1398

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Dr. Frank Takken, University of Amsterdam, for the plasmid pFT41 and pioneering work [16] and Dr. Neal Copeland, National Cancer Institute, Frederick, MD, for E. coli strain SW102 [4]. This work was supported by a Natural Sciences and Engineering Research Council of Canada grant to G. Bakkeren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guus Bakkeren Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ali, S., Bakkeren, G. (2015). Conversion of BAC Clones into Binary BAC (BIBAC) Vectors and Their Delivery into Basidiomycete Fungal Cells Using Agrobacterium tumefaciens . In: Narayanan, K. (eds) Bacterial Artificial Chromosomes. Methods in Molecular Biology, vol 1227. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1652-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1652-8_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1651-1

  • Online ISBN: 978-1-4939-1652-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics