Skip to main content

Determination of Antimicrobial Resistance in Salmonella spp.

  • Protocol
  • First Online:
Salmonella

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1225))

Abstract

Infections with Salmonella are an important public health problem worldwide. Salmonella are one of the most common causes of food-borne illness in humans. There are many types of Salmonella but they can be divided into two broad categories: those that cause typhoid and those that do not. The typhoidal Salmonella (TS), such as S. enterica subsp. enterica serovars Typhi and S. Paratyphi only colonize humans and are usually acquired by the consumption of food or water contaminated with human fecal material. The much broader group of non-typhoidal Salmonella (NTS) usually results from improperly handled food that has been contaminated by animal or human fecal material. Antimicrobials are critical to the successful outcome of invasive Salmonella infections and enteric fever. Due to resistance to the older antimicrobials, ciprofloxacin [fluoroquinolone (FQ)] has become the first-line drug for treatment. Nevertheless, switch to FQ has led to a subsequent increase in the occurrence of salmonellae resistant to this antimicrobial agent. The exact mechanism of this FQ resistance is not fully understood. FQ resistance has driven the use of third-generation cephalosporins and azithromycin. However, there are sporadic worldwide reports of high level resistance to expanded-spectrum cephalosporins (such as ceftriaxone) in TS and in NTS it has been recognized since 1988 and are increasing in prevalence worldwide. Already there are rare reports of azithromycin resistance leading to treatment failure. Spread of such resistance would further greatly limit the available therapeutic options, and leave us with only the reserve antimicrobials such as carbapenem and tigecycline as possible treatment options. Here, we describe the methods involved in the genotypic characterization of antimicrobial resistance in clinical isolates of salmonellae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harish BN, Menezes GA (2011) Antimicrobial resistance in typhoidal salmonellae. Indian J Med Microbiol 29(3):223–229

    Article  PubMed  CAS  Google Scholar 

  2. Yu VL, Merigan TC Jr, Barriere SL (eds) (1999) Antimicrobial therapy and vaccines. William & Wilkins, Baltimore, MD

    Google Scholar 

  3. Rowe B, Ward LR, Threlfall EJ (1997) Multidrug-resistant Salmonella typhi: a worldwide epidemic. Clin Infect Dis 24(Suppl 1):S106–S109

    Article  PubMed  Google Scholar 

  4. Smith HW, Parsell Z, Green P (1978) Thermosensitive H1 plasmids determining citrate utilization. J Gen Microbiol 109(2):305–311

    Article  PubMed  CAS  Google Scholar 

  5. Wain J, Kidgell C (2004) The emergence of multidrug resistance to antimicrobial agents for the treatment of typhoid fever. Trans R Soc Trop Med Hyg 98(7):423–430

    Article  PubMed  CAS  Google Scholar 

  6. Toro CS, Lobos SR, Calderon I, Rodriguez M, Mora GC (1990) Clinical isolate of a porin-less Salmonella typhi resistant to high levels of chloramphenicol. Antimicrob Agents Chemother 34(9):1715–1719

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Parry CM, Thuy CT, Dongol S, Karkey A, Vinh H, Chinh NT et al (2010) Suitable disk antimicrobial susceptibility breakpoints defining Salmonella enterica serovar Typhi isolates with reduced susceptibility to fluoroquinolones. Antimicrob Agents Chemother 54:5201–5208

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Harish BN, Menezes GA, Sarangapani K, Parija SC (2008) A case report and review of the literature: Ciprofloxacin resistant Salmonella enterica serovar Typhi in India. J Infect Dev Ctries 2(4):324–327

    Article  PubMed  Google Scholar 

  9. Menezes GA, Harish BN, Khan MA, Goessens WH, Hays JP (2012) Antimicrobial resistance trends in blood culture positive Salmonella Typhi isolates from Pondicherry, India, 2005-2009. Clin Microbiol Infect 18(3):239–245

    Article  PubMed  CAS  Google Scholar 

  10. Renuka K, Kapil A, Kabra SK, Wig N, Das BK, Prasad VV et al (2004) Reduced susceptibility to ciprofloxacin and gyrA gene mutation in North Indian strains of Salmonella enterica serotype Typhi and serotype Paratyphi A. Microb Drug Resist 10(2):146–153

    Article  PubMed  CAS  Google Scholar 

  11. Giraud E, Brisabois A, Martel JL, Chaslus-Dancla E (1999) Comparative studies of mutations in animal isolates and experimental in vitro- and in vivo-selected mutants of Salmonella spp. suggest a counterselection of highly fluoroquinolone-resistant strains in the field. Antimicrob Agents Chemother 43(9):2131–2137

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Lindgren PK, Karlsson A, Hughes D (2003) Mutation rate and evolution of fluoroquinolone resistance in Escherichia coli isolates from patients with urinary tract infections. Antimicrob Agents Chemother 47:3222–3232

    Article  CAS  Google Scholar 

  13. Brown JC, Shanahan PM, Jesudason MV, Thomson CJ, Amyes SG (1996) Mutations responsible for reduced susceptibility to 4-quinolones in clinical isolates of multi-resistant Salmonella typhi in India. J Antimicrob Chemother 37(5):891–900

    Article  PubMed  CAS  Google Scholar 

  14. Wu JJ, Ko W, Tsai SH, Yan JJ (2007) Prevalence of plasmid-mediated quinolone resistance determinants QnrA, QnrB, and QnrS among clinical isolates of Enterobacter cloacae in a Taiwanese hospital. Antimicrob Agents Chemother 51(4):1223–1227

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Robicsek A, Strahilevitz J, Jacoby GA, Macielag M, Abbanat D, Park CH et al (2006) Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 12(1):83–88

    Article  PubMed  CAS  Google Scholar 

  16. Paterson DL, Rice LB, Bonomo RA (2001) Rapid method of extraction and analysis of extended spectrum β-lactamases from clinical strains of Klebsiella pneumoniae. Clin Microbiol Infect 7:709–711

    Article  PubMed  CAS  Google Scholar 

  17. Mabilat C, Goussard S (1993) PCR detection and identification of genes for extended spectrum β-lactamases. In: Persiang DH, Smith TF, Tenover FC, white TJ (Eds). Diagnostic molecular Microbiology: principles and applications. Washington DC: American Society of Microbiology. pp. 553–559

    Google Scholar 

  18. Tasli H, Bahar IH (2005) Molecular charatcterisation of TEM and SHV derived extended spectrum beta lactamases in hospital based Enterobacteriaceae in Turkey. Jpn J Infect Dis 58:162–167

    PubMed  CAS  Google Scholar 

  19. Karisik E, Ellington MJ, Pike R, Warren RE, Livermore DM, Woodford N (2006) Molecular characterisation of plasmids encoding CTX-M-15 β-lactamase from Escherichia coli strains in the United Kingdom. J Antimicrob Chemother 58:665–668

    Article  PubMed  CAS  Google Scholar 

  20. Woodford N, Fagan EJ, Ellington MJ (2006) Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum β-lactamases. J Antimicrob Chemother 57:154–155

    Article  PubMed  CAS  Google Scholar 

  21. Pérez-Pérez FJ, Hanson ND (2002) Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 40(6):2153–2162

    Article  PubMed  PubMed Central  Google Scholar 

  22. Carattoli A, Bertini A, Lilla L, Falbo V, Hopkins K, Threlfall EJ (2005) Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 63(3):219–228

    Article  PubMed  CAS  Google Scholar 

  23. Levesque C, Piche L, Larose C, Roy PH (1995) PCR mapping of integrons reveals several novel combination of resistance genes. Antimicrob Agents Chemother 39:185–191

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Khan S, Harish BN, Menezes GA, Acharya NS, Parija SC (2012) Early diagnosis of typhoid fever by nested PCR for flagellin gene of Salmonella enterica serotype Typhi. Indian J Med Res 136(5):850–854

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Chmielewski R, Wieliczko A, Kuczkowski M, Mazurkiewicz M, Ugorski M (2002) Comparison of ITS Profiling, REP- and ERIC-PCR of Salmonella Enteritidis isolates from Poland. J Vet Med B Infect Dis Vet Public Health 49:163–168

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belgode N. Harish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Harish, B.N., Menezes, G.A. (2015). Determination of Antimicrobial Resistance in Salmonella spp.. In: Schatten, H., Eisenstark, A. (eds) Salmonella. Methods in Molecular Biology, vol 1225. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1625-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1625-2_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1624-5

  • Online ISBN: 978-1-4939-1625-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics