Skip to main content
Book cover

Salmonella pp 237–287Cite as

Salmonella Phages and Prophages: Genomics, Taxonomy, and Applied Aspects

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1225))

Abstract

Since this book was originally published in 2007 there has been a significant increase in the number of Salmonella bacteriophages, particularly lytic virus, and Salmonella strains which have been fully sequenced. In addition, new insights into phage taxonomy have resulted in new phage genera, some of which have been recognized by the International Committee of Taxonomy of Viruses (ICTV). The properties of each of these genera are discussed, along with the role of phage as agents of genetic exchange, as therapeutic agents, and their involvement in phage typing.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rohwer F (2003) Global phage diversity. Cell 113:141

    PubMed  CAS  Google Scholar 

  2. Kropinski AM (2009) Measurement of the bacteriophage inactivation kinetics with purified receptors. Methods Mol Biol 501:157–160

    PubMed  CAS  Google Scholar 

  3. Broudy TB, Fischetti VA (2003) In vivo lysogenic conversion of Tox(-) Streptococcus pyogenes to Tox(+) with lysogenic Streptococci or free phage. Infect Immun 71:3782–3786

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Newton GJ, Daniels C, Burrows LL, Kropinski AM, Clarke AJ, Lam JS (2001) Three-component-mediated serotype conversion in Pseudomonas aeruginosa by bacteriophage D3. Mol Microbiol 39:1237–1247

    PubMed  CAS  Google Scholar 

  5. Zhou Y, Sugiyama H, Johnson EA (1993) Transfer of neurotoxigenicity from Clostridium butyricum to a nontoxigenic Clostridium botulinum type E-like strain. Appl Environ Microbiol 59:3825–3831

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Los M, Kuzio J, McConnell M, Kropinski AM, Wegrzyn G, Christie GE (2010) Lysogenic conversion in bacteria of importance to the food industry. In: Sabour P et al (eds) Bacteriophages in the detection and control of foodborne pathogens. ASM Press, Washington, DC, pp 157–198

    Google Scholar 

  7. Cairns J, Stent GS, Watson JD (1966) Phage and the origins of molecular biology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  8. Nicolle P, Vieu JF, Diverneau G (1970) Supplementary lysotyping of Vi-positive strains of Salmonella typhi, insensitive to all the adapted preparations of Craigie's Vi II phage (group I+IV). Arch Roum Pathol Exp Microbiol 29:609–617

    PubMed  CAS  Google Scholar 

  9. Anderson ES, Ward LR, De Saxe MJ, De Sa JDH (1977) Bacteriophage-typing designations of Salmonella typhimurium. J Hygiene 78:297–300

    CAS  Google Scholar 

  10. Anderson ES (1964) The phage typing of Salmonella other than S typhi. In: Van Oye E (ed) The world problem of salmonellosis. Dr. W. Junk Publishers, The Hague, pp 89–109

    Google Scholar 

  11. Fischetti VA (2001) Phage antibacterials make a comeback. Nat Biotechnol 19:734–735

    PubMed  CAS  Google Scholar 

  12. Ackermann H-W (2007) Salmonella phages examined in the electron microscope. Methods Mol Biol 394:213–234

    PubMed  CAS  Google Scholar 

  13. Ackermann H-W (1998) Tailed bacteriophages: the order Caudovirales. Adv Virus Res 51:135–201

    PubMed  CAS  Google Scholar 

  14. Moreno Switt AI, Orsi RH, den Bakker HC, Vongkamjan K, Altier C, Wiedmann M (2013) Genomic characterization provides new insight into Salmonella phage diversity. BMC Genomics 14:481

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Li L, Stoeckert CJ Jr, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189

    PubMed  CAS  PubMed Central  Google Scholar 

  16. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    PubMed  CAS  Google Scholar 

  17. Adriaenssens EM, Ackermann HW, Anany H, Blasdel B, Connerton IF, Goulding D, Griffiths MW, Hooton SP, Kutter EM, Kropinski AM, Lee JH, Maes M, Pickard D, Ryu S, Sepehrizadeh Z, Shahrbabak SS, Toribio AL, Lavigne R (2012) A suggested new bacteriophage genus: "Viunalikevirus". Arch Virol 157:2035–2046

    PubMed  CAS  Google Scholar 

  18. Adriaenssens EM, Van Vaerenbergh J, Vandenheuvel D, Dunon V, Ceyssens PJ, De Proft M, Kropinski AM, Noben JP, Maes M, Lavigne R (2012) T4-related bacteriophage LIMEstone isolates for the control of soft rot on potato caused by 'Dickeya solani'. PLoS One 7:e33227

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Pickard D, Toribio AL, Petty NK, van Tonder A, Yu L, Goulding D, Barrell B, Rance R, Harris D, Wetter M, Wain J, Choudhary J, Thomson N, Dougan G (2010) A conserved acetyl esterase domain targets diverse bacteriophages to the Vi capsular receptor of Salmonella enterica serovar Typhi. J Bacteriol 192:5746–5754

    PubMed  CAS  PubMed Central  Google Scholar 

  20. Park M, Lee JH, Shin H, Kim M, Choi J, Kang DH, Heu S, Ryu S (2012) Characterization and comparative genomic analysis of a novel bacteriophage, SFP10, simultaneously inhibiting both Salmonella enterica and Escherichia coli O157:H7. Appl Environ Microbiol 78:58–69

    PubMed  CAS  PubMed Central  Google Scholar 

  21. Anany H, Lingohr EJ, Villegas A, Ackermann HW, She YM, Griffiths MW, Kropinski AM (2011) A Shigella boydii bacteriophage which resembles Salmonella phage ViI. Virol J 8(242):242

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Kutter EM, Skutt-Kakaria K, Blasdel B, El-Shibiny A, Castano A, Bryan D, Kropinski AM, Villegas A, Ackermann HW, Toribio AL, Pickard D, Anany H, Callaway T, Brabban AD (2011) Characterization of a ViI-like phage specific to Escherichia coli O157:H7. Virol J 8:430

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Hooton SP, Timms AR, Rowsell J, Wilson R, Connerton IF (2011) Salmonella typhimurium-specific bacteriophage ΦSH19 and the origins of species specificity in the Vi01-like phage family. Virol J 8:498. doi:10.1186/1743-422X-8-498,498

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Felix A, Callow BR (1943) Typing of paratyphoid B bacilli by means of Vi bacteriophage. Br Med J 2:4308–4310

    Google Scholar 

  25. Hirsh DC, Martin LD (1983) Rapid detection of Salmonella spp. by using Felix-O1 bacteriophage and high-performance liquid chromatography. Appl Environ Microbiol 45:260–264

    PubMed  CAS  PubMed Central  Google Scholar 

  26. Kuhn J, Suissa M, Wyse J, Cohen I, Weiser I, Reznick S, Lubinsky-Mink S, Stewart G, Ulitzur S (2002) Detection of bacteria using foreign DNA: the development of a bacteriophage reagent for Salmonella. Int J Food Microbiol 74:229–238

    PubMed  CAS  Google Scholar 

  27. Whichard JM, Sriranganathan N, Pierson FW (2003) Suppression of Salmonella growth by wild-type and large-plaque variants of bacteriophage Felix O1 in liquid culture and on chicken frankfurters. J Food Prot 66:220–225

    PubMed  Google Scholar 

  28. Whichard JM, Weigt LA, Borris DJ, Li LL, Zhang Q, Kapur V, Pierson FW, Lingohr EJ, She YM, Kropinski AM, Sriranganathan N (2010) Complete genomic sequence of bacteriophage Felix O1. Viruses 2:710–730

    PubMed  CAS  PubMed Central  Google Scholar 

  29. Voelker R, Sulakvelidze A, Ackermann HW (2005) Spontaneous tail length variation in a Salmonella myovirus. Virus Res 114:164–166

    PubMed  CAS  Google Scholar 

  30. Villegas A, She YM, Kropinski AM, Lingohr EJ, Mazzocco A, Ojha S, Waddell TE, Ackermann HW, Moyles DM, Ahmed R, Johnson RP (2009) The genome and proteome of a virulent Escherichia coli O157:H7 bacteriophage closely resembling Salmonella phage Felix O1. Virol J 6:41

    PubMed  PubMed Central  Google Scholar 

  31. Tiwari BR, Kim J (2013) Complete genome sequence of bacteriophage EC6, capable of lysing Escherichia coli O157:H7. Genome Announc 1:e00085-12

    PubMed  PubMed Central  Google Scholar 

  32. Lehman SM, Kropinski AM, Castle AJ, Svircev AM (2009) Complete genome of the broad-host-range Erwinia amylovora phage ϕEa21-4 and its relationship to Salmonella phage felix O1. Appl Environ Microbiol 75:2139–2147

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Celamkoti S, Kundeti S, Purkayastha A, Mazumder R, Buck C, Seto D (2004) GeneOrder3.0: software for comparing the order of genes in pairs of small bacterial genomes. BMC Bioinformatics 5:52

    PubMed  PubMed Central  Google Scholar 

  34. Welkos S, Schreiber M, Baer H (1974) Identification of Salmonella with the O-1 bacteriophage. Appl Microbiol 28:618–622

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Hudson HP, Lindberg AA, Stocker BA (1978) Lipopolysaccharide core defects in Salmonella typhimurium mutants which are resistant to Felix O phage but retain smooth character. J Gen Microbiol 109:97–112

    PubMed  CAS  Google Scholar 

  36. Santos SB, Kropinski AM, Ceyssens PJ, Ackermann HW, Villegas A, Lavigne R, Krylov VN, Carvalho CM, Ferreira EC, Azeredo J (2011) Genomic and proteomic characterization of the broad-host-range Salmonella phage PVP-SE1: creation of a new phage genus. J Virol 85:11265–11273

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Kropinski AM, Waddell T, Meng J, Franklin K, Ackermann HW, Ahmed R, Mazzocco A, Yates J, Lingohr EJ, Johnson RP (2013) The host-range, genomics and proteomics of Escherichia coli O157:H7 bacteriophage rV5. Virol J 10:76

    PubMed  PubMed Central  Google Scholar 

  38. Truncaite L, Simoliunas E, Zajanckauskaite A, Kaliniene L, Mankeviciute R, Staniulis J, Klausa V, Meskys R (2012) Bacteriophage vB_EcoM_FV3: a new member of "rV5-like viruses". Arch Virol 157:2431–2435

    PubMed  CAS  Google Scholar 

  39. Tsonos J, Adriaenssens EM, Klumpp J, Hernalsteens JP, Lavigne R, De Greve H (2012) Complete genome sequence of the novel Escherichia coli phage phAPEC8. J Virol 86:13117–13118

    PubMed  CAS  PubMed Central  Google Scholar 

  40. Abbasifar R, Kropinski AM, Sabour PM, Ackermann HW, Alanis VA, Abbasifar A, Griffiths MW (2012) Genome sequence of Cronobacter sakazakii myovirus vB_CsaM_GAP31. J Virol 86:13830–13831

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Schwarzer D, Buettner FF, Browning C, Nazarov S, Rabsch W, Bethe A, Oberbeck A, Bowman VD, Stummeyer K, Muhlenhoff M, Leiman PG, Gerardy-Schahn R (2012) A multivalent adsorption apparatus explains the broad host range of phage phi92: a comprehensive genomic and structural analysis. J Virol 86:10384–10398

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Edgell DR, Gibb EA, Belfort M (2010) Mobile DNA elements in T4 and related phages. Virol J 7:290

    PubMed  PubMed Central  Google Scholar 

  43. Miller EC, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W (2003) Bacteriophage T4 genome. Microbiol Mol Biol Rev 67:86–156

    PubMed  CAS  PubMed Central  Google Scholar 

  44. Petrov VM, Ratnayaka S, Nolan JM, Miller ES, Karam JD (2010) Genomes of the T4-related bacteriophages as windows on microbial genome evolution. Virol J 7:292

    PubMed  PubMed Central  Google Scholar 

  45. Parks A, Abuladze T, Anderson B, Li M, Carter C, Hanna L, Heyse S, Charbonneau D, Sulakvelidze A, Woolston J (2013) Bacteriophages lytic for Salmonella rapidly reduce Salmonella contamination on glass and stainless steel surfaces. Bacteriophage 3:e25697

    PubMed  PubMed Central  Google Scholar 

  46. Marti R, Zurfluh K, Hagens S, Pianezzi J, Klumpp J, Loessner MJ (2013) Long tail fibres of the novel broad-host-range T-even bacteriophage S16 specifically recognize Salmonella OmpC. Mol Microbiol 87:818–834

    PubMed  CAS  Google Scholar 

  47. Lee JH, Shin H, Kim H, Ryu S (2011) Complete genome sequence of Salmonella bacteriophage SPN3US. J Virol 85:13470–13471

    PubMed  CAS  PubMed Central  Google Scholar 

  48. Dömötör D, Becságh P, Rákhely G, Schneider G, Kovács T (2012) Complete genomic sequence of Erwinia amylovora phage PhiEaH2. J Virol 86:10899–10912

    PubMed  PubMed Central  Google Scholar 

  49. Wang J, Jiang Y, Vincent M, Sun Y, Yu H, Wang J, Bao Q, Kong H, Hu S (2005) Complete genome sequence of bacteriophage T5. Virology 332:45–65

    PubMed  CAS  Google Scholar 

  50. Kim M, Ryu S (2011) Characterization of a T5-like coliphage, SPC35, and differential development of resistance to SPC35 in Salmonella enterica serovar typhimurium and Escherichia coli. Appl Environ Microbiol 77:2042–2050

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Niu YD, Stanford K, Kropinski AM, Ackermann HW, Johnson RP, She YM, Ahmed R, Villegas A, McAllister TA (2012) Genomic, proteomic and physiological characterization of a T5-like bacteriophage for control of Shiga toxin-producing Escherichia coli O157:H7. PLoS One 7:e34585

    PubMed  CAS  PubMed Central  Google Scholar 

  52. Hong J, Kim KP, Heu S, Lee SJ, Adhya S, Ryu S (2008) Identification of host receptor and receptor-binding module of a newly sequenced T5-like phage EPS7. FEMS Microbiol Lett 289:202–209

    PubMed  CAS  Google Scholar 

  53. Ackermann HW, Berthiaume L, Kasatiya SS (1972) Morphology of lysotypic phages of Salmonella paratyphi B (Felix and Callow chart). Can J Microbiol 18:77–81

    PubMed  CAS  Google Scholar 

  54. Turner D, Hezwani M, Nelson S, Salisbury V, Reynolds D (2012) Characterization of the Salmonella bacteriophage vB_SenS-Ent1. J Gen Virol 93:2046–2056

    PubMed  CAS  Google Scholar 

  55. Kang HW, Kim JW, Jung TS, Woo GJ (2013) wksl3, a new biocontrol agent for Salmonella enterica serovars Enteritidis and Typhimurium in foods: characterization, application, sequence analysis, and oral acute toxicity study. Appl Environ Microbiol 79:1956–1968

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Kim SH, Park JH, Lee BK, Kwon HJ, Shin JH, Kim J, Kim S (2012) Complete genome sequence of Salmonella bacteriophage SS3e. J Virol 86:10253–10254

    PubMed  CAS  PubMed Central  Google Scholar 

  57. Tiwari BR, Kim S, Kim J (2012) Complete genomic sequence of Salmonella enterica serovar Enteritidis phage SE2. J Virol 86:7712

    PubMed  CAS  PubMed Central  Google Scholar 

  58. De Lappe N, Doran G, O'Connor J, O'Hare C, Cormican M (2009) Characterization of bacteriophages used in the Salmonella enterica serovar Enteritidis phage-typing scheme. J Med Microbiol 58:86–93

    PubMed  Google Scholar 

  59. Moreno Switt AI, den Bakker HC, Vongkamjan K, Hoelzer K, Warnick LD, Cummings K, Wiedmann M (2013) Salmonella bacteriophage diversity reflects host diversity on dairy farms. Food Microbiol 36:275–285

    Google Scholar 

  60. Delbrück M, Luria SE (1942) Interference between bacterial viruses. I. Interference between two bacterial viruses acting upon the same host, and the mechanism of virus growth. Arch Biochem 1:111–114

    Google Scholar 

  61. Roberts MD, Kropinski AM (2011) T1-like viruses: Siphoviridae. In: Tidona CA et al (eds) The Springer index of viruses. Springer, New York, pp 1821–1830

    Google Scholar 

  62. Roberts MD (2001) T1-like viruses. In: Tidona CA et al (eds) The Springer index of viruses. Springer, Heidelberg, pp 1–10

    Google Scholar 

  63. Roberts MD, Martin NL, Kropinski AM (2004) The genome and proteome of coliphage T1. Virology 318:245–266

    PubMed  CAS  Google Scholar 

  64. Kropinski AM, Lingohr EJ, Moyles DM, Ojha S, Mazzocco A, She YM, Bach SJ, Rozema EA, Stanford K, McAllister TA, Johnson RP (2012) Endemic bacteriophages: a cautionary tale for evaluation of bacteriophage therapy and other interventions for infection control in animals. J Virol 9:207

    Google Scholar 

  65. Sertic V, Boulgakov N (1935) Classification et identification des typhi-phages. C R Séances Soc Biol Ses Fil 119:1270–1272

    CAS  Google Scholar 

  66. Schade SZ, Adler J, Ris H (1967) How bacteriophage chi attacks motile bacteria. J Virol 1:591–598

    PubMed  CAS  PubMed Central  Google Scholar 

  67. Lee JH, Shin H, Choi Y, Ryu S (2013) Complete genome sequence analysis of bacterial-flagellum-targeting bacteriophage chi. Arch Virol 158(10):2179–2183

    PubMed  CAS  Google Scholar 

  68. Choi Y, Shin H, Lee JH, Ryu S (2013) Identification and characterization of a novel flagellum-dependent Salmonella-infecting bacteriophage, iEPS5. Appl Environ Microbiol 79(16):4829–4837

    PubMed  CAS  PubMed Central  Google Scholar 

  69. Pickard D, Thomson NR, Baker S, Wain J, Pardo M, Goulding D, Hamlin N, Choudhary J, Threfall J, Dougan G (2008) Molecular characterization of the Salmonella enterica serovar Typhi Vi-typing bacteriophage E1. J Bacteriol 190:2580–2587

    PubMed  CAS  PubMed Central  Google Scholar 

  70. Lavigne R, Seto D, Mahadevan P, Ackermann H-W, Kropinski AM (2008) Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using BLASTP-based tools. Res Microbiol 159:406–414

    PubMed  CAS  Google Scholar 

  71. Dunn JJ, Studier FW (1983) Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J Mol Biol 166:477–535

    PubMed  CAS  Google Scholar 

  72. Molineux IJ (2001) No syringes please, ejection of phage T7 DNA from the virion is enzyme driven. Mol Microbiol 40:1–8

    PubMed  CAS  Google Scholar 

  73. Walkinshaw MD, Taylor P, Sturrock SS, Atanasiu C, Berge T, Henderson RM, Edwardson JM, Dryden DT (2002) Structure of Ocr from bacteriophage T7, a protein that mimics B-form DNA. Mol Cell 9:187–194

    PubMed  CAS  Google Scholar 

  74. Sturrock SS, Dryden DT, Atanasiu C, Dornan J, Bruce S, Cronshaw A, Taylor P, Walkinshaw MD (2001) Crystallization and preliminary X-ray analysis of ocr, the product of gene 0.3 of bacteriophage T7. Acta Crystallogr D Biol Crystallogr 57:1652–1654

    PubMed  CAS  Google Scholar 

  75. Marchand I, Nicholson AW, Dreyfus M (2001) High-level autoenhanced expression of a single-copy gene in Escherichia coli: overproduction of bacteriophage T7 protein kinase directed by T7 late genetic elements. Gene 262:231–238

    PubMed  CAS  Google Scholar 

  76. Robertson ES, Aggison LA, Nicholson AW (1994) Phosphorylation of elongation factor G and ribosomal protein S6 in bacteriophage T7-infected Escherichia coli. Mol Microbiol 11:1045–1057

    PubMed  CAS  Google Scholar 

  77. Chen Z, Schneider TD (2005) Information theory based T7-like promoter models: classification of bacteriophages and differential evolution of promoters and their polymerases. Nucleic Acids Res 33:6172–6187

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Kwon HJ, Cho SH, Kim TE, Won YJ, Jeong J, Park SC, Kim JH, Yoo HS, Park YH, Kim SJ (2008) Characterization of a T7-like lytic bacteriophage (ϕSG-JL2) of Salmonella enterica serovar gallinarum biovar gallinarum. Appl Environ Microbiol 74:6970–6979

    PubMed  CAS  PubMed Central  Google Scholar 

  79. Dobbins AT, George M Jr, Basham DA, Ford ME, Houtz JM, Pedulla ML, Lawrence JG, Hatfull GF, Hendrix RW (2004) Complete genomic sequence of the virulent Salmonella bacteriophage SP6. J Bacteriol 186:1933–1944

    PubMed  CAS  PubMed Central  Google Scholar 

  80. Scholl D, Kieleczawa J, Kemp P, Rush J, Richardson CC, Merril C, Adhya S, Molineux IJ (2004) Genomic analysis of bacteriophages SP6 and K1-5, an estranged subgroup of the T7 supergroup. J Mol Biol 335:1151–1171

    PubMed  CAS  Google Scholar 

  81. Zafar N, Mazumder R, Seto D (2002) CoreGenes: a computational tool for identifying and cataloging "core" genes in a set of small genomes. BMC Bioinformatics 3:12

    PubMed  PubMed Central  Google Scholar 

  82. Savalia D, Westblade LF, Goel M, Florens L, Kemp P, Akulenko N, Pavlova O, Padovan JC, Chait BT, Washburn MP, Ackermann H-W, Mushegian A, Gabisonia T, Molineux I, Severinov K (2008) Genomic and proteomic analysis of phiEco32, a novel Escherichia coli bacteriophage. J Mol Biol 377:774–789

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Kropinski AM, Lingohr EJ, Ackermann HW (2011) The genome sequence of enterobacterial phage 7-11, which possesses an unusually elongated head. Arch Virol 156:149–151

    PubMed  CAS  Google Scholar 

  84. Ahiwale SS, Bankar AV, Tagunde SN, Zinjarde S, Ackermann HW, Kapadnis BP (2013) Isolation and characterization of a rare waterborne lytic phage of Salmonella enterica serovar Paratyphi B. Can J Microbiol 59:318–323

    PubMed  CAS  Google Scholar 

  85. Kazmierczak KM, Rothman-Denes LB (2006) Bacteriophage N4. In: Calendar R (ed) The bacteriophages. Oxford University Press, New York, pp 302–314

    Google Scholar 

  86. Zinder ND, Lederberg J (1952) Genetic exchange in Salmonella. J Bacteriol 64:679

    PubMed  CAS  PubMed Central  Google Scholar 

  87. Clark AJ, Inwood W, Cloutier T, Dhillon TS (2001) Nucleotide sequence of coliphage HK620 and the evolution of lambdoid phages. J Mol Biol 311:657–679

    PubMed  CAS  Google Scholar 

  88. Dhillon TS, Poon AP, Chan D, Clark AJ (1998) General transducing phages like Salmonella phage P22 isolated using a smooth strain of Escherichia coli as host. FEMS Microbiol Lett 161:129–133

    PubMed  CAS  Google Scholar 

  89. Villafane R, Zayas M, Gilcrease EB, Kropinski AM, Casjens SR (2008) Genomic analysis of bacteriophage ε34 of Salmonella enterica serovar Anatum (15+). BMC Microbiol 8:227

    PubMed  PubMed Central  Google Scholar 

  90. Mmolawa PT, Schmieger H, Tucker CP, Heuzenroeder MW (2003) Genomic structure of the Salmonella enterica serovar Typhimurium DT 64 bacteriophage ST64T: evidence for modular genetic architecture. J Bacteriol 185:3473–3475

    PubMed  CAS  PubMed Central  Google Scholar 

  91. Price-Carter M, Roy-Chowdhury P, Pope CE, Paine S, De Lisle GW, Collins DM, Nicol C, Carter PE (2011) The evolution and distribution of phage ST160 within Salmonella enterica serotype Typhimurium. Epidemiol Infect 139:1262–1271

    PubMed  CAS  Google Scholar 

  92. Ho N, Lingohr EJ, Villegas A, Cole L, Kropinski AM (2012) Genomic characterization of two new Salmonella bacteriophages: vB_SosS_Oslo and vB_SemP_Emek. Ann Agrarian Sci 10:18–23

    Google Scholar 

  93. Casjens S, Winn-Stapley DA, Gilcrease EB, Morona R, Kuhlewein C, Chua JE, Manning PA, Clark AJ (2004) The chromosome of Shigella flexneri bacteriophage Sf6: complete nucleotide sequence, genetic mosaicism, and DNA packaging. J Mol Biol 339:379–394

    PubMed  CAS  Google Scholar 

  94. Venza Colon CJ, Vasquez Leon AY, Villafane RJ (2004) Initial interaction of the P22 phage with the Salmonella typhimurium surface. P R Health Sci J 23:95–101

    PubMed  Google Scholar 

  95. Steinbacher S, Miller S, Baxa U, Weintraub A, Seckler R (1997) Interaction of Salmonella phage P22 with its O-antigen receptor studied by X-ray crystallography. Biol Chem 378:337–343

    PubMed  CAS  Google Scholar 

  96. Cho EH, Nam CE, Alcaraz R Jr, Gardner JF (1999) Site-specific recombination of bacteriophage P22 does not require integration host factor. J Bacteriol 181:4245–4249

    PubMed  CAS  PubMed Central  Google Scholar 

  97. Hofer B, Ruge M, Dreiseikelmann B (1995) The superinfection exclusion gene (sieA) of bacteriophage P22: identification and overexpression of the gene and localization of the gene product. J Bacteriol 177:3080–3086

    PubMed  CAS  PubMed Central  Google Scholar 

  98. Ranade K, Poteete AR (1993) Superinfection exclusion (sieB) genes of bacteriophages P22 and lambda. J Bacteriol 175:4712–4718

    PubMed  CAS  PubMed Central  Google Scholar 

  99. Iseki S, Kashiwagi K (1955) Induction of somatic antigen 1 by bacteriophage in Salmonella group B. Proc Jpn Acad 31:558–564

    Google Scholar 

  100. Rundell K, Shuster CW (1975) Membrane-associated nucleotide sugar reactions: influence of mutations affecting lipopolysaccharide on the first enzyme of O-antigen synthesis. J Bacteriol 123:928–936

    PubMed  CAS  PubMed Central  Google Scholar 

  101. Pedulla ML, Ford ME, Karthikeyan T, Houtz JM, Hendrix RW, Hatfull GF, Poteete AR, Gilcrease EB, Winn-Stapley DA, Casjens SR (2003) Corrected sequence of the bacteriophage P22 genome. J Bacteriol 185:1475–1477

    PubMed  CAS  PubMed Central  Google Scholar 

  102. Vander BC, Kropinski AM (2000) Sequence of the genome of Salmonella bacteriophage P22. J Bacteriol 182:6472–6481

    Google Scholar 

  103. Ebel-Tsipis J, Botstein D, Fox MS (1972) Generalized transduction by phage P22 in Salmonella typhimurium. I Molecular origin of transducing DNA. J Mol Biol 71:433–448

    PubMed  CAS  Google Scholar 

  104. Poteete AR (1988) Bacteriophage P22. In: Calendar R (ed) The bacteriophages. Plenum, New York, pp 647–682

    Google Scholar 

  105. Parent KN, Doyle SM, Anderson E, Teschke CM (2005) Electrostatic interactions govern both nucleation and elongation during phage P22 procapsid assembly. Virology 340:33–45

    PubMed  CAS  Google Scholar 

  106. Weigele PR, Sampson L, Winn-Stapley D, Casjens SR (2005) Molecular genetics of bacteriophage P22 scaffolding protein's functional domains. J Mol Biol 348:831–844

    PubMed  CAS  Google Scholar 

  107. Kang S, Prevelige PE Jr (2005) Domain study of bacteriophage p22 coat protein and characterization of the capsid lattice transformation by hydrogen/deuterium exchange. J Mol Biol 347:935–948

    PubMed  CAS  Google Scholar 

  108. Anderson E, Teschke CM (2003) Folding of phage P22 coat protein monomers: kinetic and thermodynamic properties. Virology 313:184–197

    PubMed  CAS  Google Scholar 

  109. Cingolani G, Moore SD, Prevelige PE Jr, Johnson JE (2002) Preliminary crystallographic analysis of the bacteriophage P22 portal protein. J Struct Biol 139:46–54

    PubMed  CAS  Google Scholar 

  110. Casjens S, Weigele P (2005) DNA packaging by bacteriophage P22. In: Catalano CE (ed) Viral genome packaging machines: genetics, structure, and mechanisms. Landes Bioscience, Georgetown, TX, pp 80–88

    Google Scholar 

  111. Tang L, Marion WR, Cingolani G, Prevelige PE, Johnson JE (2005) Three-dimensional structure of the bacteriophage P22 tail machine. EMBO J 24:2087–2095

    PubMed  CAS  PubMed Central  Google Scholar 

  112. Andrews D, Butler JS, Al-Bassam J, Joss L, Winn-Stapley DA, Casjens S, Cingolani G (2005) Bacteriophage P22 tail accessory factor GP26 is a long triple-stranded coiled-coil. J Biol Chem 280:5929–5933

    PubMed  CAS  Google Scholar 

  113. Wu H, Sampson L, Parr R, Casjens S (2002) The DNA site utilized by bacteriophage P22 for initiation of DNA packaging. Mol Microbiol 45:1631–1646

    PubMed  CAS  Google Scholar 

  114. Casjens SR, Thuman-Commike PA (2011) Evolution of mosaically related tailed bacteriophage genomes seen through the lens of phage P22 virion assembly. Virology 411:393–415

    PubMed  CAS  Google Scholar 

  115. Greenberg M, Dunlap J, Villafane R (1995) Identification of the tailspike protein from the Salmonella newington phage epsilon 34 and partial characterization of its phage-associated properties. J Struct Biol 115:283–289

    PubMed  CAS  Google Scholar 

  116. Villafane R, Casjens SR, Kropinski AM (2005) Sequence of Salmonella enterica serovar Anatum-specific bacteriophage Epsilon34. Unpublished results

    Google Scholar 

  117. Mmolawa PT, Willmore R, Thomas CJ, Heuzenroeder MW (2002) Temperate phages in Salmonella enterica serovar Typhimurium: implications for epidemiology. Int J Med Microbiol 291:633–644

    PubMed  Google Scholar 

  118. Gilcrease EB, Winn-Stapley DA, Hewitt FC, Joss L, Casjens SR (2005) Nucleotide sequence of the head assembly gene cluster of bacteriophage L and decoration protein characterization. J Bacteriol 187:2050–2057

    PubMed  CAS  PubMed Central  Google Scholar 

  119. Tanaka K, Nishimori K, Makino S, Nishimori T, Kanno T, Ishihara R, Sameshima T, Akiba M, Nakazawa M, Yokomizo Y, Uchida I (2004) Molecular characterization of a prophage of Salmonella enterica serotype Typhimurium DT104. J Clin Microbiol 42:1807–1812

    PubMed  CAS  PubMed Central  Google Scholar 

  120. Schmieger H, Schicklmaier P (1999) Transduction of multiple drug resistance of Salmonella enterica serovar Typhimurium DT104. FEMS Microbiol Lett 170:251–256

    PubMed  CAS  Google Scholar 

  121. Petri JB, Schmieger H (1990) Isolation of fragments with pac function for phage P22 from phage LP7 DNA and comparison of packaging gene 3 sequences. Gene 88:47–55

    PubMed  CAS  Google Scholar 

  122. Uetake H, Uchita T (1959) Mutants of Salmonella ε15 with abnormal conversion properties. Virology 9:495–505

    PubMed  CAS  Google Scholar 

  123. Uetake H, Luria SE, Burrous JW (1958) Conversion of somatic antigens in Salmonella by phage infection leading to lysis or lysogeny. Virology 5:68–91

    PubMed  CAS  Google Scholar 

  124. Uetake H, Nakagawa T, Akiba T (1955) The relationship of bacteriophage to antigenic changes in group E Salmonellas. J Bacteriol 69:571–579

    PubMed  CAS  PubMed Central  Google Scholar 

  125. Bray D, Robbins PW (1967) Mechanism of ε15 conversion studied with bacteriophage mutants. J Mol Biol 30:457–475

    PubMed  CAS  Google Scholar 

  126. Losick R, Robbins PW (1967) Mechanism of ε15 conversion studied with a bacterial mutant. J Mol Biol 30:445–455

    PubMed  CAS  Google Scholar 

  127. Robbins P, Uchida T (1962) Studies on the chemical basis of the phage conversion of O-antigens in the E-group Salmonellae. Biochemistry 1:325–335

    Google Scholar 

  128. Robbins P, Uchida T (1965) Chemical and macromolecular structure of O-antigens from Salmonella anatum strains carrying mutants of bacteriophage Epsilon 15. J Biol Chem 240:375–383

    CAS  Google Scholar 

  129. Robbins P, Keller JM, Wright A, Bernstein RL (1965) Enzymatic and kinetics studies on the mechanism of O-antigen conversion by bacteriophage Epsilon 15. J Biol Chem 240:384–390

    PubMed  CAS  Google Scholar 

  130. Uchida T, Robbins PW, Luria SE (1963) Analysis of the serological determinant groups of the Salmonella E-group O-antigens. Biochemistry 2:663–668

    PubMed  CAS  Google Scholar 

  131. McConnell M, Walker B, Middleton P, Chase J, Owens J, Hyatt D, Gutierrez H, Williams M, Hambright D, Barry M Jr (1992) Restriction endonuclease and genetic mapping studies indicate that the vegetative genome of the temperate, Salmonella-specific bacteriophage, epsilon 15, is circularly-permuted. Arch Virol 123:215–221

    PubMed  CAS  Google Scholar 

  132. Kanegasaki S, Wright A (1973) Studies on the mechanism of phage adsorption: Interaction between Epsilon 15 and its cellular receptor. Virology 52:160–173

    PubMed  CAS  Google Scholar 

  133. Takeda K, Uetake H (1973) In vitro interaction between phage and receptor lipopolysaccharide: a novel glycosidase associated with phage Epsilon 15. Virology 52:148–159

    CAS  Google Scholar 

  134. McConnell MR, Reznick A, Wright A (1979) Studies on the initial interactions of bacteriophage Epsilon 15 with its host cell, Salmonella anatum. Virology 94:10–23

    PubMed  CAS  Google Scholar 

  135. Kropinski AM, Kovalyova IV, Billington SJ, Butts BD, Patrick AN, Guichard JA, Hutson SM, Sydlaske AD, Day KR, Falk DR, McConnell MR (2007) The genome of ε15, a serotype-converting, Group E1 Salmonella enterica-specific bacteriophage. Virology 369:234–244

    PubMed  CAS  PubMed Central  Google Scholar 

  136. Vezzi A, Campanaro S, D'Angelo M, Simonato F, Vitulo N, Lauro F, Cestaro A, Malacrida G, Simionati B, Cannata N, Bartlett D, Valle G (2004) Genome analysis of Photobacterium profundum reveals the complexity of high pressure adaptations. GenBank Accession Number: NC_006370. Unpublished results

    Google Scholar 

  137. Summer EJ, Gonzalez CF, Bomer M, Carlile T, Morrison W, Embry A, Kucherka AM, Lee J, Mebane L, Morrison WC, Mark L, King MD, LiPuma MJ, Vidaver AK, Young R (2006) Divergence and mosaicism among virulent soil phages of the Burkholderia cepacia complex. J Bacteriol 188:255–268

    PubMed  CAS  PubMed Central  Google Scholar 

  138. Liu M, Gingery M, Doulatov SR, Liu Y, Hodes A, Baker S, Davis P, Simmonds M, Churcher C, Mungall K, Quail MA, Preston A, Harvill ET, Maskell DJ, Eiserling FA, Parkhill J, Miller JF (2004) Genomic and genetic analysis of Bordetella bacteriophages encoding reverse transcriptase-mediated tropism-switching cassettes. J Bacteriol 186:1503–1517

    PubMed  CAS  PubMed Central  Google Scholar 

  139. Ahmed R, Bopp C, Borczyk A, Kasatiya S (1987) Phage-typing scheme for Escherichia coli O157:H7. J Infect Dis 155:806–809

    PubMed  CAS  Google Scholar 

  140. Perry LL, SanMiguel P, Minocha U, Terekhov AI, Shroyer ML, Farris LA, Bright N, Reuhs BL, Applegate BM (2009) Sequence analysis of Escherichia coli O157:H7 bacteriophage ϕV10 and identification of a phage-encoded immunity protein that modifies the O157 antigen. FEMS Microbiol Lett 292:182–186

    PubMed  CAS  Google Scholar 

  141. Kropinski AM (2000) Sequence of the genome of the temperate, serotype-converting, Pseudomonas aeruginosa bacteriophage D3. J Bacteriol 182:6066–6074

    PubMed  CAS  PubMed Central  Google Scholar 

  142. van Sinderen D, Karsens H, Kok J, Terpstra P, Ruiters MH, Venema G, Nauta A (1996) Sequence analysis and molecular characterization of the temperate lactococcal bacteriophage r1t. Mol Microbiol 19:1343–1355

    PubMed  Google Scholar 

  143. Craig NL, Roberts JW (1980) E. coli recA protein-directed cleavage of phage lambda repressor requires polynucleotide. Nature 283:26–30

    PubMed  CAS  Google Scholar 

  144. Little JW (1991) Mechanism of specific LexA cleavage: autodigestion and the role of RecA coprotease. Biochimie 73:411–421

    PubMed  CAS  Google Scholar 

  145. Roberts JW, Roberts CW, Mount DW (1977) Inactivation and proteolytic cleavage of phage lambda repressor in vitro in an ATP-dependent reaction. Proc Natl Acad Sci U S A 74:2283–2287

    PubMed  CAS  PubMed Central  Google Scholar 

  146. Magrini V, Storms ML, Youderian P (1999) Site-specific recombination of temperate Myxococcus xanthus phage Mx8: regulation of integrase activity by reversible, covalent modification. J Bacteriol 181:4062–4070

    PubMed  CAS  PubMed Central  Google Scholar 

  147. Jiang W, Chang J, Jakana J, Weigele P, King J, Chiu W, Jiang W, Chang J, Jakana J, Weigele P, King J, Chiu W (2006) Structure of epsilon15 bacteriophage reveals genome organization and DNA packaging/injection apparatus. Nature 439:612–616

    PubMed  CAS  PubMed Central  Google Scholar 

  148. Le Minor L (1962) Conversion par lysogenisation de quelques sérotypes de Salmonella des groupes A, B et D normalement dépourvus du facteur 027 en cultures 27 positives. Ann Inst Pasteur 103:684–706

    Google Scholar 

  149. Le Minor L (1963) Conversion antigénique chez les Salmonella: IV. Acquisition du facteur 01 par les Salmonella des groupes R et T sous l'effet de la lysogenisation. Ann Inst Pasteur 105:879–896

    Google Scholar 

  150. Le Minor L, Ackermann H-W, Nicolle P (1963) Acquisition simultanée des facteurs 01 et 037 par les Salmonella du groupe G sous l'effet de la lysogénisation. Ann Inst Pasteur 104:469–475

    Google Scholar 

  151. Kim ML, Slauch JM (1999) Effect of acetylation (O-factor 5) on the polyclonal antibody response to Salmonella typhimurium O-antigen. FEMS Immunol Med Microbiol 26:83–92

    PubMed  CAS  Google Scholar 

  152. Slauch JM, Lee AA, Mahan MJ, Mekalanos JJ (1996) Molecular characterization of the oafA locus responsible for acetylation of Salmonella typhimurium O-antigen: oafA is a member of a family of integral membrane trans-acylases. J Bacteriol 178:5904–5909

    PubMed  CAS  PubMed Central  Google Scholar 

  153. Barrow PA (1986) Bacteriophages mediating somatic antigenic conversion in Salmonella cholerae-suis: their isolation from sewage and other Salmonella serotypes possessing the somatic 6 antigen. J Gen Microbiol 132:835–837

    PubMed  CAS  Google Scholar 

  154. Nnalue NA, Newton S, Stocker BA (1990) Lysogenization of Salmonella choleraesuis by phage 14 increases average length of O-antigen chains, serum resistance and intraperitoneal mouse virulence. Microb Pathog 8:393–402

    PubMed  CAS  Google Scholar 

  155. Le Minor L (1965) Conversions antigéniques chez les Salmonella. VII. Acquisition du facteur 14 par les Salmonella du sous groupe C1 (6, 7) apres lysogénisation par un phage tempere isole des cultures du sous groupe C4 (6, (7), (14)). Ann Inst Pasteur 109:505–515

    Google Scholar 

  156. Le Minor L, Le Minor S, Nicolle P (1961) Conversion des cultures de S. schwarzengrund et S. bredeney dépourvues de l'antigène 27 en cultures 27 positives par lysogénisation. Ann Inst Pasteur 101:571–589

    Google Scholar 

  157. Bagdian G, Mäkelä PH (1971) Antigenic conversion by phage P27. I Mapping of the prophage attachment site on the Salmonella chromosome. Virology 43:403–411

    PubMed  CAS  Google Scholar 

  158. Lindberg AA, Hellerqvist CG, Bagdian-Motta G, Mäkelä PH (1978) Lipopolysaccharide modification accompanying antigenic conversion by phage P27. J Gen Microbiol 107:279–287

    CAS  Google Scholar 

  159. Shin H, Lee JH, Lim JA, Kim H, Ryu S (2012) Complete genome sequence of Salmonella enterica serovar typhimurium bacteriophage SPN1S. J Virol 86:1284–1285

    PubMed  CAS  PubMed Central  Google Scholar 

  160. Kuo TT, Stocker BA (1970) ES18, a general transducing phage for smooth and nonsmooth Salmonella typhimurium. Virology 42:621–632

    PubMed  CAS  Google Scholar 

  161. Le Minor L, Chalon AM (1975) Sensitivity to bacteriophage ES18 of strains of "S. dublin", "S. enteritidis" and "S. blegdam" and related serotypes. Ann Microbiol 126:327–331

    Google Scholar 

  162. Killmann H, Braun M, Herrmann C, Braun V (2001) FhuA barrel-cork hybrids are active transporters and receptors. J Bacteriol 183:3476–3487

    PubMed  CAS  PubMed Central  Google Scholar 

  163. Casjens SR, Gilcrease EB, Winn-Stapley DA, Schicklmaier P, Schmieger H, Pedulla ML, Ford ME, Houtz JM, Hatfull GF, Hendrix RW (2005) The generalized transducing Salmonella bacteriophage ES18: complete genome sequence and DNA packaging strategy. J Bacteriol 187:1091–1104

    PubMed  CAS  PubMed Central  Google Scholar 

  164. Yamamoto N (1978) A generalized transducing salmonella phage ES18 can recombine with a serologically unrelated phage Fels 1. J Gen Virol 38:263–272

    PubMed  CAS  Google Scholar 

  165. Figueroa-Bossi N, Coissac E, Netter P, Bossi L (1997) Unsuspected prophage-like elements in Salmonella typhimurium. Mol Microbiol 25:161–173

    PubMed  CAS  Google Scholar 

  166. Figueroa-Bossi N, Uzzau S, Maloriol D, Bossi L (2001) Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella. Mol Microbiol 39:260–271

    PubMed  CAS  Google Scholar 

  167. Bossi L, Figueroa-Bossi N (2005) Prophage arsenal of Salmonella enterica serovar Typhimurium. In: Waldor MK et al (eds) Phages: their role in bacterial pathogenesis and biotechnology. ASM Press, Washington, DC, pp 165–186

    Google Scholar 

  168. Yamamoto N (1969) Genetic evolution of bacteriophage. I. Hybrids between unrelated bacteriophages P22 and Fels 2. Proc Natl Acad Sci U S A 62:63–69

    PubMed  CAS  PubMed Central  Google Scholar 

  169. Yamamoto N (1967) The origin of bacteriophage P221. Virology 33:545–547

    PubMed  CAS  Google Scholar 

  170. Caldon CE, Yoong P, March PE (2001) Evolution of a molecular switch: universal bacterial GTPases regulate ribosome function. Mol Microbiol 41:289–297

    PubMed  CAS  Google Scholar 

  171. Ho TD, Slauch JM (2001) OmpC is the receptor for Gifsy-1 and Gifsy-2 bacteriophages of Salmonella. J Bacteriol 183:1495–1498

    PubMed  CAS  PubMed Central  Google Scholar 

  172. Ho TD, Figueroa-Bossi N, Wang M, Uzzau S, Bossi L, Slauch JM (2002) Identification of GtgE, a novel virulence factor encoded on the Gifsy-2 bacteriophage of Salmonella enterica serovar Typhimurium. J Bacteriol 184:5234–5239

    PubMed  CAS  PubMed Central  Google Scholar 

  173. Bullas LR, Mostaghimi AR, Arensdorf JJ, Rajadas PT, Zuccarelli AJ (1991) Salmonella phage PSP3, another member of the P2-like phage group. Virology 185:918–921

    PubMed  CAS  Google Scholar 

  174. Nilsson AS, Haggård-Ljungquist E (2006) The P2-like bacteriophages. In: Calendar R (ed) The bacteriophages. Oxford University Press, New York, pp 365–390

    Google Scholar 

  175. Yamamoto N, McDonald RJ (1986) Genomic structure of phage F22, a hybrid between serologically and morphologically unrelated Salmonella typhimurium bacteriophages P22 and Fels 2. Genet Res 48:139–143

    PubMed  CAS  Google Scholar 

  176. Pelludat C, Mirold S, Hardt WD (2003) The SopEPhi phage integrates into the ssrA gene of Salmonella enterica serovar Typhimurium A36 and is closely related to the Fels-2 prophage. J Bacteriol 185:5182–5191

    PubMed  CAS  PubMed Central  Google Scholar 

  177. Mirold S, Rabsch W, Rohde M, Stender S, Tschape H, Russmann H, Igwe E, Hardt WD (1999) Isolation of a temperate bacteriophage encoding the type III effector protein SopE from an epidemic Salmonella typhimurium strain. Proc Natl Acad Sci U S A 96:9845–9850

    PubMed  CAS  PubMed Central  Google Scholar 

  178. Rudolph MG, Weise C, Mirold S, Hillenbrand B, Bader B, Wittinghofer A, Hardt WD (1999) Biochemical analysis of SopE from Salmonella typhimurium, a highly efficient guanosine nucleotide exchange factor for RhoGTPases. J Biol Chem 274:30501–30509

    PubMed  CAS  Google Scholar 

  179. Boyd JS (1950) The symbiotic bacteriophages of Salmonella typhi-murium. J Pathol Bacteriol 62:501–517

    PubMed  CAS  Google Scholar 

  180. Thomson N, Baker S, Pickard D, Fookes M, Anjum M, Hamlin N, Wain J, House D, Bhutta Z, Chan K, Falkow S, Parkhill J, Woodward M, Ivens A, Dougan G (2004) The role of prophage-like elements in the diversity of Salmonella enterica serovars. J Mol Biol 339:279–300

    PubMed  CAS  Google Scholar 

  181. Fouts DE (2006) Phage_Finder: automated identification and classification of prophage regions in complete bacterial genome sequences. Nucleic Acids Res 34:5839–5851

    PubMed  CAS  PubMed Central  Google Scholar 

  182. Lima-Mendez G, van Helden J, Toussaint A, Leplae R (2008) Prophinder: a computational tool for prophage prediction in prokaryotic genomes. Bioinformatics 24:863–865

    PubMed  CAS  Google Scholar 

  183. Bose M, Barber R (2006) Prophage Finder: a prophage loci prediction tool for prokaryotic genome sequences. In Silico Biol 6:0020

    Google Scholar 

  184. Akhter S, Aziz RK, Edwards RA (2012) PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies. Nucleic Acids Res 40:e126

    PubMed  CAS  PubMed Central  Google Scholar 

  185. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS (2011) PHAST: a fast phage search tool. Nucleic Acids Res 39:W347–W352

    PubMed  CAS  PubMed Central  Google Scholar 

  186. Cooke FJ, Wain J, Fookes M, Ivens A, Thomson N, Brown DJ, Threlfall EJ, Gunn G, Foster G, Dougan G (2007) Prophage sequences defining hot spots of genome variation in Salmonella enterica serovar Typhimurium can be used to discriminate between field isolates. J Clin Microbiol 45:2590–2598

    PubMed  CAS  PubMed Central  Google Scholar 

  187. Rychlik I, Hradecka H, Malcova M (2008) Salmonella enterica serovar Typhimurium typing by prophage-specific PCR. Microbiology 154:1384–1389

    PubMed  CAS  Google Scholar 

  188. Maloy SR, Stewart VP, Taylor RK (1996) Genetic analysis of pathogenic bacteria. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  189. Davis RW, Botstein D, Roth JR (1980) Advanced bacterial genetics: a manual for genetic engineering. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  190. Schmieger H (1972) Phage P22-mutants with increased or decreased transduction abilities. Mol Gen Genet 119:75–88

    PubMed  CAS  Google Scholar 

  191. Benson NR, Goldman BS (1992) Rapid mapping in Salmonella typhimurium with Mud-P22 prophages. J Bacteriol 174:1673–1681

    PubMed  CAS  PubMed Central  Google Scholar 

  192. Youderian P, Sugiono P, Brewer KL, Higgins NP, Elliott T (1988) Packaging specific segments of the Salmonella chromosome with locked-in Mud-P22 prophages. Genetics 118:581–592

    PubMed  CAS  PubMed Central  Google Scholar 

  193. Chen LM, Goss TJ, Bender RA, Swift S, Maloy S (1998) Genetic analysis, using P22 challenge phage, of the nitrogen activator protein DNA-binding site in the Klebsiella aerogenes put operon. J Bacteriol 180:571–577

    PubMed  CAS  PubMed Central  Google Scholar 

  194. Szegedi SS, Gumport RI (2000) DNA binding properties in vivo and target recognition domain sequence alignment analyses of wild-type and mutant RsrI [N6-adenine] DNA methyltransferases. Nucleic Acids Res 28:3972–3981

    PubMed  CAS  PubMed Central  Google Scholar 

  195. Ashraf SI, Kelly MT, Wang YK, Hoover TR (1997) Genetic analysis of the Rhizobium meliloti nifH promoter, using the P22 challenge phage system. J Bacteriol 179:2356–2362

    PubMed  CAS  PubMed Central  Google Scholar 

  196. Pfau JD, Taylor RK (1996) Genetic footprint on the ToxR-binding site in the promoter for cholera toxin. Mol Microbiol 20:213–222

    PubMed  CAS  Google Scholar 

  197. Grimont PAD, Weill F-X (2007) Antigenic formulae of the Salmonella serovars, 9th edn. WHO Collaborating Centre for Reference and Research on Salmonella, Pasteur Institute, Paris

    Google Scholar 

  198. Guibourdenche M, Roggentin P, Mikoleit M, Fields PI, Bockemühl J, Grimont PA, Weill FX (2010) Supplement 2003–2007 (no. 47) to the White-Kauffmann-Le Minor scheme. Res Microbiol 161:29

    Google Scholar 

  199. Rhodes P, Quesnel LB (1986) Comparison of Muller-Kauffmann tetrathionate broth with Rappaport-Vassiliadis (RV) medium for the isolation of salmonellas from sewage sludge. J Appl Bacteriol 60:161–167

    PubMed  CAS  Google Scholar 

  200. Anderson ES, WILLIAMS RE (1956) Bacteriophage typing of enteric pathogens and staphylococci and its use in epidemiology. J Clin Pathol 9:94–127

    PubMed  CAS  PubMed Central  Google Scholar 

  201. Callow BR (1959) A new phage-typing scheme for Salmonella typhi-murium. J Hygiene 57:346–359

    CAS  Google Scholar 

  202. Kallings LO (1967) Sensitivity of various salmonella strains to felix 0-1 phage. Acta Pathol Microbiol Scand 70:446–454

    PubMed  CAS  Google Scholar 

  203. Poppe C, McFadden KA, Demczuk WH (1996) Drug resistance, plasmids, biotypes and susceptibility to bacteriophages of Salmonella isolated from poultry in Canada. Int J Food Microbiol 30:325–344

    PubMed  CAS  Google Scholar 

  204. Lindberg AA (1973) Bacteriophage receptors. Annu Rev Microbiol 27:205–241

    PubMed  CAS  Google Scholar 

  205. Craigie J, Yen CH (1938) The demonstration of types of B. typhosus by means of preparations of type II Vi phage. I. Principles and technique. Can J Public Health 29:448–484

    Google Scholar 

  206. Craigie J, Yen CH (1938) The demonstration of types of B. typhosus by means of preparations of type II Vi phage. II. The stability and epidemiological significance of V form types of B. typhosus. Can J Public Health 29:484–496

    Google Scholar 

  207. Selander RK, Smith NH, Li J, Beltran P, Ferris KE, Kopecko DJ, Rubin FA (1992) Molecular evolutionary genetics of the cattle-adapted serovar Salmonella dublin. J Bacteriol 174:3587–3592

    PubMed  CAS  PubMed Central  Google Scholar 

  208. Nair S, Alokam S, Kothapalli S, Porwollik S, Proctor E, Choy C, McClelland M, Liu SL, Sanderson KE (2004) Salmonella enterica serovar Typhi strains from which SPI7, a 134-kilobase island with genes for Vi exopolysaccharide and other functions, has been deleted. J Bacteriol 186:3214–3223

    PubMed  CAS  PubMed Central  Google Scholar 

  209. Mitchell E, O'Mahony M, Lynch D, Ward LR, Rowe B, Uttley A, Rogers T, Cunningham DG, Watson R (1989) Large outbreak of food poisoning caused by Salmonella typhimurium definitive type 49 in mayonnaise. BMJ 298:99–101

    PubMed  CAS  PubMed Central  Google Scholar 

  210. Ward LR, de Sa JD, Rowe B (1987) A phage-typing scheme for Salmonella enteritidis. Epidemiol Infect 99:291–294

    PubMed  CAS  PubMed Central  Google Scholar 

  211. Khakhria R, Duck D, Lior H (1991) Distribution of Salmonella enteritidis phage types in Canada. Epidemiol Infect 106:25–32

    PubMed  CAS  PubMed Central  Google Scholar 

  212. Frost JA, Ward LR, Rowe B (1989) Acquisition of a drug resistance plasmid converts Salmonella enteritidis phage type 4 to phage type 24. Epidemiol Infect 103:243–248

    PubMed  CAS  PubMed Central  Google Scholar 

  213. Zhang Y, LeJeune JT (2008) Transduction of bla(CMY-2), tet(A), and tet(B) from Salmonella enterica subspecies enterica serovar Heidelberg to S. typhimurium. Vet Microbiol 129:418–425

    PubMed  CAS  Google Scholar 

  214. Demczuk W, Soule G, Clark C, Ackermann HW, Easy R, Khakhria R, Rodgers F, Ahmed R (2003) Phage-based typing scheme for Salmonella enterica serovar Heidelberg, a causative agent of food poisonings in Canada. J Clin Microbiol 41:4279–4284

    PubMed  CAS  PubMed Central  Google Scholar 

  215. Duckworth DH (1976) Who discovered bacteriophage? Bacteriol Rev 40:793–802

    PubMed  CAS  PubMed Central  Google Scholar 

  216. Summers WC (1999) The hope of phage therapy. In: Felix d'Herelle and the origins of molecular biology, Anonymouspp. Yale University Press, New Haven, CT, pp 108–124

    Google Scholar 

  217. Sulakvelidze A, Barrow P (2005) Phage therapy in animals and agribusiness. In: Kutter E et al (eds) Bacteriophages: biology and application. CRC Press, Boca Raton, FL, pp 335–380

    Google Scholar 

  218. Topley WWC, Wilson J (1925) Further observations of the role of the Twort-d'Herelle phenomenon in the epidemic spread of murine typhoid. J Hygiene 24:295–300

    CAS  Google Scholar 

  219. Topley WWC, Wilson J, Lewis ER (1925) Role of Twort-d'Herelle phenomenon in epidemics of mouse typhoid. J Hygiene 24:17–36

    CAS  Google Scholar 

  220. Fisk RT (1938) Protective action of typhoid phage on experimental typhoid infection in mice. Proc Soc Exp Biol Med 38:659–660

    Google Scholar 

  221. Ward WE (1942) Protective action of VI bacteriophage in Eberthella typhi Infections in mice. J Infect Dis 172–176

    Google Scholar 

  222. Berchieri AJ, Lovell MA, Barrow PA (1991) The activity in the chicken alimentary tract of bacteriophages lytic for Salmonella typhimurium. Res Microbiol 142:541–549

    PubMed  Google Scholar 

  223. Sulakvelidze A, Kutter E (2005) Bacteriophage therapy in humans. In: Kutter E et al (eds) Bacteriophages: biology and application. CRC Press, Boca Raton, FL, pp 381–436

    Google Scholar 

  224. Knouf EG, Ward WE, Reichle PA, Bower AW, Hamilton PM (1946) Treatment of typhoid fever with type-specific bacteriophage. JAMA 132:134–136

    CAS  Google Scholar 

  225. Desranleau JM (1948) The treatment of typhoid fever by the use of Vi antityphoid bacteriophages. Can J Public Health 39:317

    PubMed  CAS  Google Scholar 

  226. Desranleau JM (1949) Progress in the treatment of typhoid fever with Vi phages. Can J Public Health 40:473–478

    PubMed  CAS  Google Scholar 

  227. Jalava K, Hensel A, Szostak M, Resch S, Lubitz W (2002) Bacterial ghosts as vaccine candidates for veterinary applications. J Control Release 85:17–25

    PubMed  CAS  Google Scholar 

  228. Kiknadze GP, Gadua MM, Tsereteli EV, Mchedlidze LS, Birkadze TV (1986) Efficiency of preventive treatment by phage preparations of children's hospital salmonellosis. In: Kiknadze GP (ed) Intestinal infections. Soviet Medicine, Tbilisi, GA, pp 41–44

    Google Scholar 

  229. Slopek S, Weber-Dabrowska B, Dabrowski M, Kucharewicz-Krukowska A (1987) Results of bacteriophage treatment of suppurative bacterial infections in the years 1981–1986. Arch Immunol Ther Exp (Warsz) 35:569–583

    CAS  Google Scholar 

  230. Leverentz B, Conway WS, Alavidze Z, Janisiewicz WJ, Fuchs Y, Camp MJ, Chighladze E, Sulakvelidze A (2001) Examination of bacteriophage as a biocontrol method for salmonella on fresh-cut fruit: a model study. J Food Prot 64:1116–1121

    PubMed  CAS  Google Scholar 

  231. Goode D, Allen VM, Barrow PA (2003) Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl Environ Microbiol 69:5032–5036

    PubMed  CAS  PubMed Central  Google Scholar 

  232. Modi R, Hirvi Y, Hill A, Griffiths MW (2001) Effect of phage on survival of Salmonella enteritidis during manufacture and storage of cheddar cheese made from raw and pasteurized milk. J Food Prot 64:927–933

    PubMed  CAS  Google Scholar 

  233. Ye J, Kostrzynska M, Dunfield K, Warriner K (2010) Control of Salmonella on sprouting mung bean and alfalfa seeds by using a biocontrol preparation based on antagonistic bacteria and lytic bacteriophages. J Food Protect 73:9–17

    CAS  Google Scholar 

  234. Popoff MY, Bockemuhl J, Brenner FW (2000) Supplement 1999 (no. 43) to the Kauffmann-White scheme. Res Microbiol 151:893–896

    PubMed  CAS  Google Scholar 

  235. Roy B, Ackermann HW, Pandian S, Picard G, Goulet J (1993) Biological inactivation of adhering Listeria monocytogenes by listeriaphages and a quaternary ammonium compound. Appl Environ Microbiol 59:2914–2917

    PubMed  CAS  PubMed Central  Google Scholar 

  236. Hibma AM, Jassim SA, Griffiths MW (1997) Infection and removal of L-forms of Listeria monocytogenes with bred bacteriophage. Int J Food Microbiol 34:197–207

    PubMed  CAS  Google Scholar 

  237. Abuladze T, Li M, Menetrez MY, Dean T, Senecal A, Sulakvelidze A (2008) Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7. Appl Environ Microbiol 74:6230–6238

    PubMed  CAS  PubMed Central  Google Scholar 

  238. Sharma M, Ryu JH, Beuchat LR (2005) Inactivation of Escherichia coli O157:H7 in biofilm on stainless steel by treatment with an alkaline cleaner and a bacteriophage. J Appl Microbiol 99:449–459

    PubMed  CAS  Google Scholar 

  239. Rashid MH, Revazishvili T, Dean T, Butani A, Verratti K, Bishop-Lilly KA, Sozhamannan S, Sulakvelidze A, Rajanna C (2012) A Yersinia pestis-specific, lytic phage preparation significantly reduces viable Y. pestis on various hard surfaces experimentally contaminated with the bacterium. Bacteriophage 2:168–177

    PubMed  PubMed Central  Google Scholar 

  240. Carvalho CM, Santos SB, Kropinski AM, Ferreira EC, Azeredo J (2012) Phages as therapeutic tools to control major foodborne pathogens: Campylobacter and Salmonella. In: Kurtböke I (ed) Bacteriophages. InTech, Rijeka, pp 179–214

    Google Scholar 

  241. Brüssow H, Hendrix RW (2002) Phage genomics: small is beautiful. Cell 108:13–16

    PubMed  Google Scholar 

  242. Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV (1999) Food-related illness and death in the United States. Emerg Infect Dis 5:607–625

    PubMed  CAS  PubMed Central  Google Scholar 

  243. Adamia RS, Matitashvili EA, Kvachadze LI, Korinteli VI, Matoyan DA, Kutateladze MI, Chanishvili TG (1990) The virulent bacteriophage IRA of Salmonella typhimurium: cloning of phage genes which are potentially lethal for the host cell. J Basic Microbiol 30:707–716

    PubMed  CAS  Google Scholar 

  244. Garcia P, Garcia E, Ronda C, Lopez R, Tomasz A (1983) A phage-associated murein hydrolase in Streptococcus pneumoniae infected with bacteriophage Dp-1. J Gen Microbiol 129:489–497

    PubMed  CAS  Google Scholar 

  245. Nelson D, Loomis L, Fischetti VA (2001) Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc Natl Acad Sci U S A 98:4107–4112

    PubMed  CAS  PubMed Central  Google Scholar 

  246. Schuch R, Nelson D, Fischetti VA (2002) A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418:884–889

    PubMed  CAS  Google Scholar 

  247. Zargar MA, Pandey B, Sharma R, Chakravorty M (1997) Identification of a strong promoter of bacteriophage MB78 that lacks consensus sequence around minus 35 region and interacts with phage specific factor. Virus Genes 14:137–146

    PubMed  CAS  Google Scholar 

  248. Amarillas L, Chaidez-Quiroz C, Sanudo-Barajas A, Leon-Felix J (2013) Complete genome sequence of a polyvalent bacteriophage, phiKP26, active on Salmonella and Escherichia coli. Arch Virol 158(11):2395–2398

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

A.M.K. would like to thank the Laboratory for Foodborne Zoonoses and Health Canada’s Genomic Research and Development Initiative for funding this research. Work on Salmonella phages by A.I.M.S. and M.W. was supported through a USDA-NIFA Special Research Grant to M.W. (2009-34459-19750).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Kropinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Switt, A.I.M. et al. (2015). Salmonella Phages and Prophages: Genomics, Taxonomy, and Applied Aspects. In: Schatten, H., Eisenstark, A. (eds) Salmonella. Methods in Molecular Biology, vol 1225. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1625-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1625-2_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1624-5

  • Online ISBN: 978-1-4939-1625-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics