Skip to main content

Live Cell Imaging of Intracellular Salmonella enterica

  • Protocol
  • First Online:
Salmonella

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1225))

Abstract

During the intracellular phase of the pathogenic lifestyle, Salmonella enterica massively alters the endosomal system of its host cells. Two hallmarks are the remodeling of phagosomes into the Salmonella-containing vacuole (SCV) as a replicative niche, and the formation of tubular structures, such as Salmonella-induced filaments (SIFs). To study the dynamics and the fate of these Salmonella-specific compartments, live cell imaging (LCI) is a method of choice. In this chapter, we compare currently used microscopy techniques and focus on considerations and requirements specific for LCI. Detailed protocols for LCI of Salmonella infection with either confocal laser scanning microscopy (CLSM) or spinning disk confocal microscopy (SDCM) are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haraga A, Ohlson MB, Miller SI (2008) Salmonellae interplay with host cells. Nat Rev Microbiol 6:53–66

    Article  PubMed  CAS  Google Scholar 

  2. Fabrega A, Vila J (2013) Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev 26:308–341

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Van Der Heijden J, Finlay BB (2012) Type III effector-mediated processes in Salmonella infection. Future Microbiol 7:685–703

    Article  PubMed  Google Scholar 

  4. Gerlach RG, Claudio N, Rohde M et al (2008) Cooperation of Salmonella pathogenicity islands 1 and 4 is required to breach epithelial barriers. Cell Microbiol 10:2364–2376

    Article  PubMed  CAS  Google Scholar 

  5. Bakowski MA, Braun V, Brumell JH (2008) Salmonella-containing vacuoles: directing traffic and nesting to grow. Traffic 9:2022–2031

    Article  PubMed  CAS  Google Scholar 

  6. Figueira R, Holden DW (2012) Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors. Microbiology 158:1147–1161

    Article  PubMed  CAS  Google Scholar 

  7. Garcia-Del Portillo F, Zwick MB, Leung KY et al (1993) Intracellular replication of Salmonella within epithelial cells is associated with filamentous structures containing lysosomal membrane glycoproteins. Infect Agents Dis 2:227–231

    PubMed  CAS  Google Scholar 

  8. Garcia-Del Portillo F, Zwick MB, Leung KY et al (1993) Salmonella induces the formation of filamentous structures containing lysosomal membrane glycoproteins in epithelial cells. Proc Natl Acad Sci U S A 90:10544–10548

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Garcia-Del Portillo F, Finlay BB (1995) Targeting of Salmonella typhimurium to vesicles containing lysosomal membrane glycoproteins bypasses compartments with mannose 6-phosphate receptors. J Cell Biol 129:81–97

    Article  PubMed  CAS  Google Scholar 

  10. Schroeder N, Mota LJ, Meresse S (2011) Salmonella-induced tubular networks. Trends Microbiol 19:268–277

    Article  PubMed  CAS  Google Scholar 

  11. Drecktrah D, Levine-Wilkinson S, Dam T et al (2008) Dynamic behavior of Salmonella-induced membrane tubules in epithelial cells. Traffic 9: 2117–2129

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Rajashekar R, Liebl D, Seitz A et al (2008) Dynamic remodeling of the endosomal system during formation of Salmonella-induced filaments by intracellular Salmonella enterica. Traffic 9:2100–2116

    Article  PubMed  CAS  Google Scholar 

  13. Mironov AA, Beznoussenko GV (2009) Correlative microscopy: a potent tool for the study of rare or unique cellular and tissue events. J Microsc 235:308–321

    Article  PubMed  CAS  Google Scholar 

  14. Muller T, Schumann C, Kraegeloh A (2012) STED microscopy and its applications: new insights into cellular processes on the nanoscale. Chemphyschem 13:1986–2000

    Article  PubMed  Google Scholar 

  15. Henriques R, Griffiths C, Hesper Rego E et al (2011) PALM and STORM: unlocking live-cell super-resolution. Biopolymers 95:322–331

    Article  PubMed  CAS  Google Scholar 

  16. Herbert S, Soares H, Zimmer C et al (2012) Single-molecule localization super-resolution microscopy: deeper and faster. Microsc Microanal 18:1419–1429

    Article  PubMed  CAS  Google Scholar 

  17. Conchello JA, Lichtman JW (2005) Optical sectioning microscopy. Nat Methods 2: 920–931

    Article  PubMed  CAS  Google Scholar 

  18. Rai V, Dey N (2011) The basics of confocal microscopy. In: Wang C-C (ed) Laser scanning, theory and applications. InTech, Winchester, pp 75–96

    Google Scholar 

  19. Swedlow JR, Platani M (2002) Live cell imaging using wide-field microscopy and deconvolution. Cell Struct Funct 27:335–341

    Article  PubMed  Google Scholar 

  20. Rines DR, Thomann D, Dorn JF et al (2010) Live cell imaging of yeast. In: Goldman RD, Swedlow JR, Spector DL (eds) Live cell imaging: a laboratory manual. Cold Springer Harbor Laboratory Press, Cold Spring Harbor, NY, pp 333–350

    Google Scholar 

  21. Stehbens S, Pemble H, Murrow L et al (2012) Imaging intracellular protein dynamics by spinning disk confocal microscopy. Methods Enzymol 504:293–313

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Tanaami T, Otsuki S, Tomosada N et al (2002) High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks. Appl Optics 41:4704–4708

    Article  Google Scholar 

  23. Frigault MM, Lacoste J, Swift JL et al (2009) Live-cell microscopy – tips and tools. J Cell Sci 122:753–767

    Article  PubMed  CAS  Google Scholar 

  24. Rizzo MA, Davidson MW, Piston DW (2010) Fluorescent protein tracking and detection. In: Goldman RD, Swedlow JR, Spector DL (eds) Live cell imaging: a laboratory manual. Cold Springer Harbor Laboratory Press, Cold Spring Harbor, NY, pp 3–34

    Google Scholar 

  25. Kremers GJ, Gilbert SG, Cranfill PJ et al (2011) Fluorescent proteins at a glance. J Cell Sci 124:157–160

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Stepanenko OV, Stepanenko OV, Shcherbakova DM et al (2011) Modern fluorescent proteins: from chromophore formation to novel intracellular applications. Biotechniques 51:313–314, 316, 318 passim

    Article  PubMed  Google Scholar 

  27. Vaheri A, Pagano JS (1965) Infectious poliovirus RNA: a sensitive method of assay. Virology 27:434–436

    Article  PubMed  CAS  Google Scholar 

  28. Graham FL, Van Der Eb AJ (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467

    Article  PubMed  CAS  Google Scholar 

  29. Jordan M, Wurm F (2004) Transfection of adherent and suspended cells by calcium phosphate. Methods 33:136–143

    Article  PubMed  CAS  Google Scholar 

  30. Fraley R, Subramani S, Berg P et al (1980) Introduction of liposome-encapsulated SV40 DNA into cells. J Biol Chem 255: 10431–10435

    PubMed  CAS  Google Scholar 

  31. Felgner PL, Gadek TR, Holm M et al (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A 84:7413–7417

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Felgner JH, Kumar R, Sridhar CN et al (1994) Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem 269: 2550–2561

    PubMed  CAS  Google Scholar 

  33. Douglas JT (2007) Adenoviral vectors for gene therapy. Mol Biotechnol 36:71–80

    Article  PubMed  CAS  Google Scholar 

  34. Cockrell AS, Kafri T (2007) Gene delivery by lentivirus vectors. Mol Biotechnol 36: 184–204

    Article  PubMed  CAS  Google Scholar 

  35. Cormack BP, Valdivia RH, Falkow S (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33–38

    Article  PubMed  CAS  Google Scholar 

  36. Valdivia RH, Falkow S (1996) Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol Microbiol 22:367–378

    Article  PubMed  CAS  Google Scholar 

  37. Valdivia RH, Hromockyj AE, Monack D et al (1996) Applications for green fluorescent protein (GFP) in the study of host-pathogen interactions. Gene 173:47–52

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the members of our laboratory for fruitful discussion and feedback especially Viktoria Krieger for additional hints for FuGENE TF and the CLSM system. Furthermore, we thank Rainer Kurre at CALMOS for constant and invaluable support of our microscope systems. Work was supported by Deutsche Forschungsgemeinschaft (DFG) through grants HE1964 and SFB944, project P4, and the Bundesministerium für Bildung und Forschung (BMBF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hensel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kehl, A., Hensel, M. (2015). Live Cell Imaging of Intracellular Salmonella enterica . In: Schatten, H., Eisenstark, A. (eds) Salmonella. Methods in Molecular Biology, vol 1225. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1625-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1625-2_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1624-5

  • Online ISBN: 978-1-4939-1625-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics