Skip to main content

Applications of Microscopy in Salmonella Research

  • Protocol
  • First Online:
Salmonella

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1225))

  • 3083 Accesses

Abstract

Salmonella enterica is a Gram-negative enteropathogen that can cause localized infections, typically resulting in gastroenteritis, or systemic infection, e.g., typhoid fever, in humans and many other animals. Understanding the mechanisms by which Salmonella induces disease has been the focus of intensive research. This has revealed that Salmonella invasion requires dynamic cross-talk between the microbe and host cells, in which bacterial adherence rapidly leads to a complex sequence of cellular responses initiated by proteins translocated into the host cell by a type 3 secretion system. Once these Salmonella-induced responses have resulted in bacterial invasion, proteins translocated by a second type 3 secretion system initiate further modulation of cellular activities to enable survival and replication of the invading pathogen. Elucidation of the complex and highly dynamic pathogen–host interactions ultimately requires analysis at the level of single cells and single infection events. To achieve this goal, researchers have applied a diverse range of microscopy techniques to analyze Salmonella infection in models ranging from whole animal to isolated cells and simple eukaryotic organisms. For example, electron microscopy and high-resolution light microscopy techniques such as confocal microscopy can reveal the precise location of Salmonella and its relationship to cellular components. Widefield light microscopy is a simpler approach with which to study the interaction of bacteria with host cells and often has advantages for live cell imaging, enabling detailed analysis of the dynamics of infection and cellular responses. Here we review the use of imaging techniques in Salmonella research and compare the capabilities of different classes of microscope to address specific types of research question. We also provide protocols and notes on some microscopy techniques used routinely in our own research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O'Brien SJ, Jones TF, Fazil A, Hoekstra RM (2010) The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis 50:882–889

    Article  PubMed  Google Scholar 

  2. De Jong HK, Parry CM, Van der Poll T, Wiersinga WJ (2012) Host-pathogen interaction in invasive Salmonellosis. PLoS Pathog 8:e1002933

    Article  PubMed Central  PubMed  Google Scholar 

  3. Finlay BB, Ruschkowski S, Dedhar S (1991) Cytoskeletal rearrangements accompanying Salmonella entry into epithelial cells. J Cell Sci 99(Pt 2):283–296

    PubMed  Google Scholar 

  4. Valdez Y, Ferreira RB, Finlay BB (2009) Molecular mechanisms of Salmonella virulence and host resistance. Curr Top Microbiol Immunol 337:93–127

    CAS  PubMed  Google Scholar 

  5. Clark MA, Jepson MA, Simmons NL, Hirst BH (1994) Preferential interaction of Salmonella typhimurium with mouse Peyer's patch M cells. Res Microbiol 145:543–552

    Article  CAS  PubMed  Google Scholar 

  6. Jones BD, Ghori N, Falkow S (1994) Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer's patches. J Exp Med 180:15–23

    Article  CAS  PubMed  Google Scholar 

  7. Jepson MA, Clark MA (2001) The role of M cells in Salmonella infection. Microbes Infect 3:1183–1190

    Article  CAS  PubMed  Google Scholar 

  8. Pattni K, Jepson M, Stenmark H, Banting G (2001) A PtdIns(3)P-specific probe cycles on and off host cell membranes during Salmonella invasion of mammalian cells. Curr Biol 11: 1636–1642

    Article  CAS  PubMed  Google Scholar 

  9. Unsworth KE, Way M, McNiven M, Machesky L, Holden DW (2004) Analysis of the mechanisms of Salmonella-induced actin assembly during invasion of host cells and intracellular replication. Cell Microbiol 6:1041–1055

    Article  CAS  PubMed  Google Scholar 

  10. Schlumberger MC, Muller AJ, Ehrbar K, Winnen B, Duss I, Stecher B, Hardt WD (2005) Real-time imaging of type III secretion: Salmonella SipA injection into host cells. Proc Natl Acad Sci U S A 102:12548–12553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Perrett CA, Jepson MA (2009) Regulation of Salmonella-induced membrane ruffling by SipA differs in strains lacking other effectors. Cell Microbiol 11:475–487

    Article  CAS  PubMed  Google Scholar 

  12. Misselwitz B, Barrett N, Kreibich S, Vonaesch P, Andritschke D, Rout S, Weidner K, Sormaz M, Songhet P, Horvath P, Chabria M, Vogel V, Spori DM, Jenny P, Hardt WD (2012) Near surface swimming of Salmonella Typhimurium explains target-site selection and cooperative invasion. PLoS Pathog 8:e1002810

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Vonaesch P, Cardini S, Sellin ME, Goud B, Hardt WD, Schauer K (2013) Quantitative insights into actin rearrangements and bacterial target site selection from Salmonella Typhimurium infection of micropatterned cells. Cell Microbiol. doi:10.1111/cmi.12154

    PubMed  Google Scholar 

  14. Hernandez LD, Hueffer K, Wenk MR, Galán JE (2004) Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science 304:1805–1807

    Article  CAS  PubMed  Google Scholar 

  15. Bujny MV, Ewels PA, Humphrey S, Attar N, Jepson MA, Cullen PJ (2008) Sorting nexin-1 defines an early phase of Salmonella-containing vacuole-remodeling during Salmonella infection. J Cell Sci 121:2027–2036

    Article  CAS  PubMed  Google Scholar 

  16. Ramsden AE, Mota LJ, Münter S, Shorte SL, Holden DW (2007) The SPI-2 type III secretion system restricts motility of Salmonella-containing vacuoles. Cell Microbiol 9:2517–2529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. BRAWN LC, HAYWARD RD, KORONAKIS V (2007) Salmonella SPI1 effector SipA persists after entry and cooperates with a SPI2 effector to regulate phagosome maturation and intracellular replication. Cell Host Microbe 1:63–75

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Knodler LA, Vallance BA, Celli J, Winfree S, Hansen B, Montero M, Steele-Mortimer O (2010) Dissemination of invasive Salmonella via bacterial-induced extrusion of mucosal epithelia. Proc Natl Acad Sci U S A 107: 17733–17738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Malik-Kale P, Winfree S, Steele-Mortimer O (2012) The bimodal lifestyle of intracellular Salmonella in epithelial cells: replication in the cytosol obscures defects in vacuolar replication. PLoS One 7(6):e38732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Gog JR, Murcia A, Osterman N, Restif O, McKinley TJ, Sheppard M, Achouri S, Wei B, Mastroeni P, Wood JL, Maskell DJ, Cicuta P, Bryant CE (2012) Dynamics of Salmonella infection of macrophages at the single cell level. J R Soc Interface 9:2696–2707

    Article  PubMed Central  PubMed  Google Scholar 

  21. Hautefort I, Proenca MJ, Hinton JC (2003) Single-copy green fluorescent protein gene fusions allow accurate measurement of Salmonella gene expression in vitro and during infection of mammalian cells. Appl Environ Microbiol 69:7480–7491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Clark L, Perrett CA, Malt L, Harward C, Humphrey S, Jepson KA, Martinez Argudo I, Carney LJ, La Ragione RM, Humphrey T, Jepson MA (2011) Differences in Salmonella enterica serovar Typhimurium strain invasiveness is associated with heterogeneity in SPI-1 gene expression. Microbiology 157:2072–2083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Agbor TA, McCormick BA (2011) Salmonella effectors: important players modulating host cell function during infection. Cell Microbiol 13:1858–1869

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Figueira R, Holden DW (2012) Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors. Microbiology 158:1147–1161

    Article  CAS  PubMed  Google Scholar 

  25. Galkin VE, Yu X, Bielnicki J, Heuser J, Ewing CP, Guerry P, Egelman EH (2008) Divergence of quaternary structures among bacterial flagellar filaments. Science 320:382–385

    Article  CAS  PubMed  Google Scholar 

  26. Salih O, Remaut H, Waksman G, Orlova EV (2008) Structural analysis of the Saf pilus by electronmicroscopy and image processing. J Mol Biol 379:174–187

    Article  CAS  PubMed  Google Scholar 

  27. Galkin VE, Schmied WH, Schraidt O, Marlovits TC, Egelman EH (2010) The structure of the Salmonella typhimurium type III secretion system needle shows divergence from the flagellar system. J Mol Biol 396:1392–1397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Bergeron JR, Worrall LJ, Sgourakis NG, DiMaio F, Pfuetzner RA, Felise HB, Vuckovic M, Yu AC, Miller SI, Baker D, Strynadka NC (2013) A refined model of the prototypical Salmonella SPI-1 T3SS basal body reveals the molecular basis for its assembly. PLoS Pathog 9:e1003307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Jansen AM, Hall LJ, Clare S, Goulding D, Holt KE, Grant AJ, Mastroeni P, Dougan G, Kingsley RA (2011) A Salmonella Typhimurium-Typhi genomic chimera: a model to study Vi polysaccharide capsule function in vivo. PLoS Pathog 7:e1002131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Nakano M, Yamasaki E, Ichinose A, Shimohata T, Takahashi A, Akada JK, Nakamura K, Moss J, Hirayama T, Kurazono H (2012) Salmonella enterotoxin (Stn) regulates membrane composition and integrity. Dis Model Mech 5: 515–521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Ginocchio CC, Olmsted SB, Wells CL, Galan JE (1994) Contact with epithelial cells induces the formation of surface appendages on Salmonella typhimurium. Cell 76:717–724

    Article  CAS  PubMed  Google Scholar 

  32. Reed KA, Clark MA, Booth TA, Hueck CJ, Miller SI, Hirst BH, Jepson MA (1998) Cell-contact-stimulated formation of filamentous appendages by Salmonella typhimurium does not depend on the type III secretion system encoded by Salmonella pathogenicity island 1. Infect Immun 66:2007–2017

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Knutton S (2003) Microscopic methods to study STEC. Analysis of the attaching and effacing process. Methods Mol Med 73: 137–149

    CAS  PubMed  Google Scholar 

  34. Van Putten JP, Weel JF, Grassme HU (1994) Measurements of invasion by antibody labelling and electron microscopy. Methods Enzymol 236:420–437

    Article  PubMed  Google Scholar 

  35. Serra DO et al (2013) Microanatomy at cellular resolution and spatial order of physiological differentiation in a bacterial biofilm. MBio 4(2):e00103–e00113

    Article  PubMed Central  PubMed  Google Scholar 

  36. Muller DJ, Dufrene YF (2011) Atomic force microscopy: a nanoscopic window on the cell surface. Trends Cell Biol 21:461–469

    Article  PubMed  Google Scholar 

  37. Dorobantu LS, Goss GG, Burrell RE (2012) Atomic force microscopy: a nanoscopic view of microbial cell surfaces. Micron 43:1312–1322

    Article  CAS  PubMed  Google Scholar 

  38. Wang HW, Chen Y, Yang H, Chen X, Duan MX, Tai PC, Sui SF (2003) Ring-like pore structures of SecA: implication for bacterial protein-conducting channels. Proc Natl Acad Sci U S A 100:4221–4226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Ide T, Laarmann S, Greune L, Schillers H, Oberleithner H, Schmidt MA (2001) Characterization of translocation pores inserted into plasma membranes by type III-secreted Esp proteins of enteropathogenic Escherichia coli. Cell Microbiol 3:669–679

    Article  CAS  PubMed  Google Scholar 

  40. GILLIS A, DUPRES V, MAHILLON J, DUFRENE YF (2012) Atomic force microscopy: a powerful tool for studying bacterial swarming motility. Micron 43:1304–1311

    Article  PubMed  Google Scholar 

  41. JONAS K, TOMENIUS H, KADER A, NORMARK S, ROMLING U, BELOVA LM, MELEFORS O (2007) Roles of curli, cellulose and BapA in Salmonella biofilm morphology studied by atomic force microscopy. BMC Microbiol 7:70

    Article  PubMed Central  PubMed  Google Scholar 

  42. Oh YJ, Cui Y, Kim H, Li Y, Hinterdorfer P, Park S (2012) Characterization of curli A production on living bacterial surfaces by scanning probe microscopy. Biophys J 103:1666–1671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. WRIGHT CJ, SHAH MK, POWELL LC, ARMSTRONG I (2010) Application of AFM from microbial cell to biofilm. Scanning 32: 134–149

    Article  CAS  PubMed  Google Scholar 

  44. Mansson LE, Melican K, Molitoris BA, Richter-Dahlfors A (2007) Progression of bacterial infections studied in real time–novel perspectives provided by multiphoton microscopy. Cell Microbiol 9:2334–2343

    Article  PubMed  Google Scholar 

  45. Melican K, Richter-Dahlfors A (2009) Multiphoton imaging of host-pathogen interactions. Biotechnol J 4:804–811

    Article  CAS  PubMed  Google Scholar 

  46. LAKINS MA, MARRISON JL, O'TOOLE PJ, VAN DER WOUDE MW (2009) Exploiting advances in imaging technology to study biofilms by applying multiphoton laser scanning microscopy as an imaging and manipulation tool. J Microsc 235:128–137

    Article  CAS  PubMed  Google Scholar 

  47. Farache J, Koren I, Milo I, Gurevich I, Kim KW, Zigmond E, Furtado GC, Lira SA, Shakhar G (2013) Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity 38:581–595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Cattoni DI, Fiche JB, Nöllmann M (2012) Single-molecule super-resolution imaging in bacteria. Curr Opin Microbiol 15:758–763

    Article  CAS  PubMed  Google Scholar 

  50. Strauss MP, Liew AT, Turnbull L, Whitchurch CB, Monahan LG, Harry EJ (2012) 3D-SIM super resolution microscopy reveals a bead-like arrangement for FtsZ and the division machinery: implications for triggering cytokinesis. PLoS Biol 10(9):e1001389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Turner RD, Hurd AF, Cadby A, Hobbs JK, Foster SJ (2013) Cell wall elongation mode in Gram-negative bacteria is determined by peptidoglycan architecture. Nat Commun 4:1496

    Article  PubMed Central  PubMed  Google Scholar 

  52. Uphoff S, Reyes-Lamothe R, Garza de Leon F, Sherratt DJ, Kapanidis AN (2013) Single-molecule DNA repair in live bacteria. Proc Natl Acad Sci U S A 110:8063–8068

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Stephens DJ, Allan VJ (2003) Light microscopy techniques for live cell imaging. Science 300:82–86

    Article  CAS  PubMed  Google Scholar 

  54. Jepson MA (2006) Confocal or wide-field? A guide to selecting appropriate methods for cell imaging. In: Stephens D (ed) Methods express: cell imaging. Scion Publishing Ltd (UK), Banbury, pp 17–48

    Google Scholar 

  55. Watkins SA, St Croix CM (eds) (2013) Current protcols select: imaging and microscopy. Wiley, Hoboken, NJ, USA

    Google Scholar 

  56. Grantcharova N, Peters V, Monteiro C, Zakikhany K, Römling U (2010) Bistable expression of CsgD in biofilm development of Salmonella enterica serovar typhimurium. J Bacteriol 192:456–466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Van Engelenburg SB, Palmer AE (2010) Imaging type-III secretion reveals dynamics and spatial segregation of Salmonella effectors. Nat Methods 7:325–330

    Article  PubMed  Google Scholar 

  58. Swedlow JR, Hu K, Andrews PD, Roos DS, Murray JM (2002) Measuring tubulin content in Toxoplasma gondii: a comparison of laser-scanning confocal and wide-field fluorescence microscopy. Proc Natl Acad Sci U S A 99: 2014–2019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. http://www.svi.nl/NyquistCalculator

  60. Takeuchi A (1967) Electron microscope studies of experimental Salmonella infection. I. Penetration into the intestinal epithelium by Salmonella typhimurium. Am J Pathol 50: 109–136

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Francis CL, Starnbach MN, Falkow S (1992) Morphological and cytoskeletal changes in epithelial cells occur immediately upon interaction with Salmonella typhimurium grown under low-oxygen conditions. Mol Microbiol 6: 3077–3087

    Article  CAS  PubMed  Google Scholar 

  62. Jepson MA, Clark MA (1998) Studying M cells and their role in infection. Trends Microbiol 6:359–365

    Article  CAS  PubMed  Google Scholar 

  63. Clark MA, Reed KA, Lodge J, Stephen J, Hirst BH, Jepson MA (1996) Invasion of murine intestinal M cells by Salmonella typhimurium inv mutants severely deficient for invasion of cultured cells. Infect Immun 64: 4363–4368

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Monaghan P, Watson PR, Cook H, Scott L, Wallis TS, Robertson D (2001) An improved method for preparing thick sections for immuno/histochemistry and confocal microscopy and its use to identify rare events. J Microsc 203: 223–226

    Article  CAS  PubMed  Google Scholar 

  65. Richter-Dahlfors A, Buchan AM, Finlay BB (1997) Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J Exp Med 186:569–580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Salcedo SP, Noursadeghi M, Cohen J, Holden DW (2001) Intracellular replication of Salmonella typhimurium strains in specific subsets of splenic macrophages in vivo. Cell Microbiol 3:587–597

    Article  CAS  PubMed  Google Scholar 

  67. Zhou D, Mooseker MS, Galan JE (1999) Role of the S. typhimurium actin-binding protein SipA in bacterial internalization. Science 283:2092–2095

    Article  CAS  PubMed  Google Scholar 

  68. Jepson MA, Lang TF, Reed KA, Simmons NL (1996) Evidence for a rapid, direct effect on epithelial monolayer integrity and transepithelial transport in response to Salmonella invasion. Pflugers Arch 432:225–233

    Article  CAS  PubMed  Google Scholar 

  69. La Ragione RM, Cooley WA, Velge P, Jepson MA, Woodward MJ (2003) Membrane ruffling and invasion of human and avian cell lines is reduced for aflagellate mutants of Salmonella enterica serotype Enteritidis. Int J Med Microbiol 293:261–272

    Article  PubMed  Google Scholar 

  70. Hardt WD, Chen LM, Schuebel KE, Bustelo XR, Galan JE (1998) S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93:815–826

    Article  CAS  PubMed  Google Scholar 

  71. Jepson MA, Pellegrin S, Peto L, Banbury DN, Leard AD, Mellor H, Kenny B (2003) Synergistic roles for the Map and Tir effector molecules in mediating uptake of enteropathogenic Escherichia coli (EPEC) into non-phagocytic cells. Cell Microbiol 5:773–783

    Article  CAS  PubMed  Google Scholar 

  72. Mortimer O (2005) Cloning vectors and fluorescent proteins can significantly inhibit Salmonella enterica virulence in both epithelial cells and macrophages: implications for bacterial pathogenesis studies. Infect Immun 73: 7027–7031

    Article  Google Scholar 

  73. Wendland M, Bumann D (2002) Optimization of GFP levels for analyzing Salmonella gene expression during an infection. FEBS Lett 521:105–108

    Article  CAS  PubMed  Google Scholar 

  74. Valdivia RH, Falkow S (1996) Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol Microbiol 22:367–378

    Article  CAS  PubMed  Google Scholar 

  75. Bumann D (2002) Examination of Salmonella gene expression in an infected mammalian host using the green fluorescent protein and two-colour flow cytometry. Mol Microbiol 43:1269–1283

    Article  CAS  PubMed  Google Scholar 

  76. Cain RJ, Hayward RD, Koronakis V (2004) The target cell plasma membrane is a critical interface for Salmonella cell entry effector-host interplay. Mol Microbiol 54:887–904

    Article  CAS  PubMed  Google Scholar 

  77. Brumell JH, Kujat-Choy S, Brown NF, Vallance BA, Knodler LA, Finlay BB (2003) SopD2 is a novel type III secreted effector of Salmonella typhimurium that targets late endocytic compartments upon delivery into host cells. Traffic 4:36–48

    Article  CAS  PubMed  Google Scholar 

  78. Brumell JH, Goosney DL, Finlay BB (2002) SifA, a type III secreted effector of Salmonella typhimurium, directs Salmonella-induced filament (Sif) formation along microtubules. Traffic 3:407–415

    Article  CAS  PubMed  Google Scholar 

  79. Charpentier X, Oswald E (2004) Identification of the secretion and translocation domain of the enteropathogenic and enterohemorrhagic Escherichia coli effector Cif, using TEM-1 beta-lactamase as a new fluorescence-based reporter. J Bacteriol 186:5486–5495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Van Engelenburg SB, Palmer AE (2008) Quantification of real-time Salmonella effector type III secretion kinetics reveals differential secretion rates for SopE2 and SptP. Chem Biol 15:619–628

    Article  PubMed  Google Scholar 

  81. Francis CL, Ryan TA, Jones BD, Smith SJ, Falkow S (1993) Ruffles induced by Salmonella and other stimuli direct macropinocytosis of bacteria. Nature 364:639–642

    Article  CAS  PubMed  Google Scholar 

  82. Reed KA, Booth TA, Hirst BH, Jepson MA (1996) Promotion of Salmonella typhimurium adherence and membrane ruffling in MDCK epithelia by staurosporine. FEMS Microbiol Lett 145:233–238

    Article  CAS  PubMed  Google Scholar 

  83. STEINBERG BE, SCOTT CC, GRINSTEIN S (2007) High-throughput assays of phagocytosis, phagosome maturation, and bacterial invasion. Am J Physiol Cell Physiol 292: C945–C952

    Article  CAS  PubMed  Google Scholar 

  84. Misselwitz B, Dilling S, Vonaesch P, Sacher R, Snijder B, Schlumberger M, Rout S, Stark M, von Mering C, Pelkmans L, Hardt WD (2011) RNAi screen of Salmonella invasion shows role of COPI in membrane targeting of cholesterol and Cdc42. Mol Syst Biol 7:474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Jepson MA, Schlecht HB, Collares-Buzato CB (2000) Localization of dysfunctional tight junctions in Salmonella enterica serovar typhimurium-infected epithelial layers. Infect Immun 68:7202–7208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Criss AK, Ahlgren DM, Jou TS, McCormick BA, Casanova JE (2001) The GTPase Rac1 selectively regulates Salmonella invasion at the apical plasma membrane of polarized epithelial cells. J Cell Sci 114:1331–1341

    CAS  PubMed  Google Scholar 

  87. Raffatellu M, Wilson RP, Chessa D, Andrews-Polymenis H, Tran QT, Lawhon S et al (2005) SipA, SopA, SopB, SopD, and SopE2 contribute to Salmonella enterica serotype typhimurium invasion of epithelial cells. Infect Immun 73: 146–154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Clark MA, Hirst BH, Jepson MA (1998) M-cell surface beta1 integrin expression and invasin-mediated targeting of Yersinia pseudotuberculosis to mouse Peyer's patch M cells. Infect Immun 66:1237–1243

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Jepson MA, Clark MA, Simmons NL, Hirst BH (1993) Actin accumulation at sites of attachment of indigenous apathogenic segmented filamentous bacteria to mouse ileal epithelial cells. Infect Immun 61:4001–4004

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Jepson MA, Kenny B, Leard AD (2001) Role of sipA in the early stages of Salmonella typhimurium entry into epithelial cells. Cell Microbiol 3:417–426

    Article  CAS  PubMed  Google Scholar 

  91. Meresse S, Unsworth KE, Habermann A, Griffiths G, Fang F, Martinez-Lorenzo MJ et al (2001) Remodelling of the actin cytoskeleton is essential for replication of intravacuolar Salmonella. Cell Microbiol 3:567–577

    Article  CAS  PubMed  Google Scholar 

  92. HUMPHREY S, MACVICAR T, STEVENSON A, ROBERTS M, HUMPHREY TJ, JEPSON MA (2011) SulA-induced filamentation in Salmonella enterica serovar Typhimurium: effects on SPI-1 expression and epithelial infection. J Appl Microbiol 111:185–196

    Article  CAS  PubMed  Google Scholar 

  93. Ferry MS, Razinkov IA, Hasty J (2011) Microfluidics for synthetic biology: from design to execution. Methods Enzymol 497: 295–372

    Article  CAS  PubMed  Google Scholar 

  94. Sturm A, Heinemann M, Arnoldini M, Benecke A, Ackermann M, Benz M, Dormann J, Hardt WD (2011) The cost of virulence: retarded growth of Salmonella Typhimurium cells expressing type III secretion system 1. PLoS Pathog 7:e1002143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Yim L, Betancor L, Martínez A, Bryant C, Maskell D, Chabalgoity JA (2011) Naturally occurring motility-defective mutants of Salmonella enterica serovar Enteritidis isolated preferentially from nonhuman rather than human sources. Appl Environ Microbiol 77: 7740–7748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Hesse WR, Kim MJ (2009) Visualization of flagellar interactions on bacterial carpets. J Microsc 233(2):302–308

    Article  CAS  PubMed  Google Scholar 

  97. Humphrey S, Clark LF, Humphrey TJ, Jepson MA (2011) Enhanced recovery of Salmonella Typhimurium DT104 from exposure to stress at low temperature. Microbiology 157: 1103–1114

    Article  CAS  PubMed  Google Scholar 

  98. Buchmeier NA, Libby SJ (1997) Dynamics of growth and death within a Salmonella typhimurium population during infection of macrophages. Can J Microbiol 43: 29–34

    Article  CAS  PubMed  Google Scholar 

  99. Freese HM, Karsten U, Schumann R (2006) Bacterial abundance, activity, and viability in the eutrophic River Warnow, northeast Germany. Microb Ecol 51:117–127

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Alan Leard, Katy Jepson, Tom MacVicar, Joe Beesley, and Jon Jennings for assistance with microscopy, image processing, and protocols. We also acknowledge all our colleagues who have contributed to the studies of Salmonella infection and the development of microscopical techniques discussed here. Work in this laboratory as described here was supported by MRC, BBSRC, and Unilever. The University of Bristol Bioimaging Facility was initially established with funding from MRC and its subsequent expansion has been funded by The Wolfson Foundation, University of Bristol and MRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Jepson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Malt, L.M., Perrett, C.A., Humphrey, S., Jepson, M.A. (2015). Applications of Microscopy in Salmonella Research. In: Schatten, H., Eisenstark, A. (eds) Salmonella. Methods in Molecular Biology, vol 1225. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1625-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1625-2_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1624-5

  • Online ISBN: 978-1-4939-1625-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics