Skip to main content

Direct Attachment of Nanoparticle Cargo to Salmonella typhimurium Membranes Designed for Combination Bacteriotherapy Against Tumors

  • Protocol
  • First Online:
Salmonella

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1225))

Abstract

Nanoparticle technology is an emerging approach to resolve difficult-to-manage internal diseases. It is highly regarded, in particular, for medical use in treatment of cancer due to the innate ability of certain nanoparticles to accumulate in the porous environment of tumors and to be toxic to cancer cells. However, the therapeutic success of nanoparticles is limited by the technical difficulty of fully penetrating and thus attacking the tumor. Additionally, while nanoparticles possess seeming-specificity due to the unique physiological properties of tumors themselves, it is difficult to tailor the delivery of nanoparticles or drugs in other models, such as use in cardiac disease, to the specific target. Thus, a need for delivery systems that will accurately and precisely bring nanoparticles carrying drug payloads to their intended sites currently exists. Our solution to this engineering challenge is to load such nanoparticles onto a biological “mailman” (a novel, nontoxic, therapeutic strain of Salmonella typhimurium engineered to preferentially and precisely seek out, penetrate, and hinder prostate cancer cells as the biological delivery system) that will deliver the therapeutics to a target site. In this chapter, we describe two methods that establish proof-of-concept for our cargo loading and delivery system by attaching nanoparticles to the Salmonella membrane. The first method (Subheading 1.1) describes association of sucrose-conjugated gold nanoparticles to the surface of Salmonella bacteria. The second method (Subheading 1.2) biotinylates the native Salmonella membrane to attach streptavidin-conjugated fluorophores as example nanoparticle cargo, with an alternative method (expression of membrane bound biotin target sites using autodisplay plasmid vectors) that increases the concentration of biotin on the membrane surface for streptavidin-conjugated nanoparticle attachment. By directly attaching the fluorophores to our bacterial vector through biocompatible, covalent, and stable bonds, the coupling of bacterial and nanoparticle therapeutic approaches should synergistically lead to improved tumor destruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jain S, Hirst DG, O’Sullivan JM (2012) Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 85(1010):101–113

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Kennedy LC et al (2011) A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7(2):169–183

    Article  PubMed  CAS  Google Scholar 

  3. Puvanakrishnan P et al (2012) In vivo tumor targeting of gold nanoparticles: effect of particle type and dosing strategy. Int J Nanomedicine 7:1251–1258

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Ruoslahti E, Bhatia SN, Sailor MJ (2010) Targeting of drugs and nanoparticles to tumors. J Cell Biol 188(6):759–768

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Liu Z et al (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68(16):6652–6660

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Dykman LA (2010) Gold nanoparticles as an antigen carrier and an adjuvant. In: Nanotechnology science and technology. Nova, New York, NY, xiv, 54 p

    Google Scholar 

  7. Gao J et al (2012) Colloidal stability of gold nanoparticles modified with thiol compounds: bioconjugation and application in cancer cell imaging. Langmuir 28(9):4464–4471

    Article  PubMed  CAS  Google Scholar 

  8. McCarthy EF (2006) The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J 26:154–158

    PubMed  PubMed Central  Google Scholar 

  9. Bermudes D, Zheng LM, King IC (2002) Live bacteria as anticancer agents and tumor-selective protein delivery vectors. Curr Opin Drug Discov Devel 5(2):194–199

    PubMed  CAS  Google Scholar 

  10. Nguyen VH et al (2010) Genetically engineered Salmonella typhimurium as an imageable therapeutic probe for cancer. Cancer Res 70(1):18–23

    Article  PubMed  CAS  Google Scholar 

  11. Forbes NS et al (2003) Sparse initial entrapment of systemically injected Salmonella typhimurium leads to heterogeneous accumulation within tumors. Cancer Res 63(17):5188–5193

    PubMed  CAS  Google Scholar 

  12. Hayashi K et al (2009) Cancer metastasis directly eradicated by targeted therapy with a modified Salmonella typhimurium. J Cell Biochem 106(6):992–998

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Michl P, Gress TM (2004) Bacteria and bacterial toxins as therapeutic agents for solid tumors. Curr Cancer Drug Targets 4(8):689–702

    Article  PubMed  CAS  Google Scholar 

  14. Hashim S et al (2000) Live Salmonella modulate expression of Rab proteins to persist in a specialized compartment and escape transport to lysosomes. J Biol Chem 275(21):16281–16288

    Article  PubMed  CAS  Google Scholar 

  15. Toso JF et al (2002) Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol 20(1):142–152

    Article  PubMed  PubMed Central  Google Scholar 

  16. El-Aneed A (2004) An overview of current delivery systems in cancer gene therapy. J Control Release 94(1):1–14

    Article  PubMed  CAS  Google Scholar 

  17. Ganai S, Arenas RB, Forbes NS (2009) Tumour-targeted delivery of TRAIL using Salmonella typhimurium enhances breast cancer survival in mice. Br J Cancer 101(10):1683–1691

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Seow Y, Wood MJ (2009) Biological gene delivery vehicles: beyond viral vectors. Mol Ther 17(5):767–777

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Vassaux G et al (2006) Bacterial gene therapy strategies. J Pathol 208(2):290–298

    Article  PubMed  CAS  Google Scholar 

  20. McClelland M et al (2001) Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413(6858):852–856

    Article  PubMed  CAS  Google Scholar 

  21. Zhong Z et al (2007) Salmonella-host cell interactions, changes in host cell architecture, and destruction of prostate tumor cells with genetically altered Salmonella. Microsc Microanal 13(5):372–383

    Article  PubMed  CAS  Google Scholar 

  22. Akin D et al (2007) Bacteria-mediated delivery of nanoparticles and cargo into cells. Nat Nanotechnol 2(7):441–449

    Article  PubMed  CAS  Google Scholar 

  23. Fernandes R et al (2011) Enabling cargo-carrying bacteria via surface attachment and triggered release. Small 7(5):588–592

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Chen I et al (2005) Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat Methods 2(2):99–104

    Article  PubMed  CAS  Google Scholar 

  25. Green NM (1990) Avidin and streptavidin. Methods Enzymol 184:51–67

    Article  PubMed  CAS  Google Scholar 

  26. Holmberg A et al (2005) The biotin-streptavidin interaction can be reversibly broken using water at elevated temperatures. Electrophoresis 26(3):501–510

    Article  PubMed  CAS  Google Scholar 

  27. Maurer J, Jose J, Meyer TF (1997) Autodisplay: one-component system for efficient surface display and release of soluble recombinant proteins from Escherichia coli. J Bacteriol 179(3):794–804

    PubMed  CAS  PubMed Central  Google Scholar 

  28. Qi Z et al (2004) Characterization of gold nanoparticles synthesized using sucrose by seeding formation in the solid phase and seeding growth in aqueous solution. J Phys Chem B 108(22):7006–7011

    Article  CAS  Google Scholar 

  29. Haisler WL et al (2013) Three-dimensional cell culturing by magnetic levitation. Nat Protoc 8(10):1940–1949

    Article  PubMed  CAS  Google Scholar 

  30. Beckett D, Kovaleva E, Schatz PJ (1999) A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci 8(4):921–929

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Paniagua-Solis J et al (1996) Construction of CTB fusion proteins for screening of monoclonal antibodies against Salmonella typhi OmpC peptide loops. FEMS Microbiol Lett 141(1):31–36

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Mauer lab for the kind gift of pJM22 autodisplay vector, and the Ting lab for the kind gift of BirA overexpression plasmid pET21a-BirA. We thank Alison Dino and the University of Missouri Cell Core for maintaining cell lines and assistance with cell sort protocols. This work was funded internally by the Cancer Research Center (Columbia, MO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Kazmierczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kazmierczak, R., Choe, E., Sinclair, J., Eisenstark, A. (2015). Direct Attachment of Nanoparticle Cargo to Salmonella typhimurium Membranes Designed for Combination Bacteriotherapy Against Tumors. In: Schatten, H., Eisenstark, A. (eds) Salmonella. Methods in Molecular Biology, vol 1225. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1625-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1625-2_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1624-5

  • Online ISBN: 978-1-4939-1625-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics