Skip to main content

Treatment of Donor Cell/Embryo with Different Approaches to Improve Development After Nuclear Transfer

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1222))

Abstract

The successful production of cloned animals by somatic cell nuclear transfer (SCNT) is a promising technology with many potential applications in basic research, medicine, and agriculture. However, the low efficiency and the difficulty of cloning are major obstacles to the widespread use of this technology. Since the first mammal cloned from an adult donor cell was born, many attempts have been made to improve animal cloning techniques, and some approaches have successfully improved its efficiency. Nuclear transfer itself is still difficult because it requires an accomplished operator with a practiced technique. Thus, it is very important to find simple and reproducible methods for improving the success rate of SCNT. In this chapter, we will review our recent protocols, which seem to be the simplest and most reliable method to date to improve development of SCNT embryos.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Briggs R, King TJ (1952) Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. (Translated from eng). Proc Natl Acad Sci U S A 38(5):455–463

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Gurdon JB, Uehlinger V (1966) “Fertile” intestine nuclei. (Translated from eng). Nature 210(5042):1240–1241

    Article  PubMed  CAS  Google Scholar 

  3. Campbell KH, McWhir J, Ritchie WA, Wilmut I (1996) Sheep cloned by nuclear transfer from a cultured cell line. (Translated from eng). Nature 380(6569):64–66

    Article  PubMed  CAS  Google Scholar 

  4. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. (Translated from eng). Nature 385(6619):810–813

    Article  PubMed  CAS  Google Scholar 

  5. Wakayama T, Perry AC, Zuccotti M, Johnson KR, Yanagimachi R (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. (Translated from eng). Nature 394(6691):369–374

    Article  PubMed  CAS  Google Scholar 

  6. Kato Y et al (1998) Eight calves cloned from somatic cells of a single adult. (Translated from eng). Science (New York, NY) 282(5396):2095–2098

    Article  CAS  Google Scholar 

  7. Cibelli J (2007) Developmental biology. A decade of cloning mystique. (Translated from eng). Science 316(5827):990–992

    Article  PubMed  CAS  Google Scholar 

  8. Thuan NV, Kishigami S, Wakayama T (2010) How to improve the success rate of mouse cloning technology. (Translated from eng). J Reprod Dev 56(1):20–30

    Article  PubMed  Google Scholar 

  9. Momosaki S et al (2010) PK11195 might selectively suppress the quinolinic acid-induced enhancement of anaerobic glycolysis in glial cells. Brain Res 1340:18–23

    Article  PubMed  CAS  Google Scholar 

  10. Wakayama T (2007) Production of cloned mice and ES cells from adult somatic cells by nuclear transfer: how to improve cloning efficiency? (Translated from eng). J Reprod Dev 53(1):13–26

    Article  PubMed  CAS  Google Scholar 

  11. Wakayama T, Yanagimachi R (2001) Mouse cloning with nucleus donor cells of different age and type. (Translated from eng). Mol Reprod Dev 58(4):376–383

    Article  PubMed  CAS  Google Scholar 

  12. Hiiragi T, Solter D (2005) Reprogramming is essential in nuclear transfer. (Translated from eng). Mol Reprod Dev 70(4):417–421

    Article  PubMed  CAS  Google Scholar 

  13. Amano T, Tani T, Kato Y, Tsunoda Y (2001) Mouse cloned from embryonic stem (ES) cells synchronized in metaphase with nocodazole. (Translated from eng). J Exp Zool 289(2):139–145

    Article  PubMed  CAS  Google Scholar 

  14. Cibelli JB et al (1998) Cloned transgenic calves produced from nonquiescent fetal fibroblasts. (Translated from eng). Science (New York, NY) 280(5367):1256–1258

    Article  CAS  Google Scholar 

  15. Kasinathan P, Knott JG, Wang Z, Jerry DJ, Robl JM (2001) Production of calves from G1 fibroblasts. (Translated from eng). Nat Biotechnol 19(12):1176–1178

    Article  PubMed  CAS  Google Scholar 

  16. Ono Y, Shimozawa N, Ito M, Kono T (2001) Cloned mice from fetal fibroblast cells arrested at metaphase by a serial nuclear transfer. (Translated from eng). Biol Reprod 64(1):44–50

    Article  PubMed  CAS  Google Scholar 

  17. Ono Y et al (2001) Production of cloned mice from embryonic stem cells arrested at metaphase. (Translated from eng). Reproduction (Cambridge, England) 122(5):731–736

    Article  CAS  Google Scholar 

  18. Tani T, Kato Y, Tsunoda Y (2003) Reprogramming of bovine somatic cell nuclei is not directly regulated by maturation promoting factor or mitogen-activated protein kinase activity. (Translated from eng). Biol Reprod 69(6):1890–1894

    Article  PubMed  CAS  Google Scholar 

  19. Wakayama T, Rodriguez I, Perry AC, Yanagimachi R, Mombaerts P (1999) Mice cloned from embryonic stem cells. (Translated from eng). Proc Natl Acad Sci U S A 96(26):14984–14989

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Inoue K et al (2003) Effects of donor cell type and genotype on the efficiency of mouse somatic cell cloning. (Translated from eng). Biol Reprod 69(4):1394–1400

    Article  PubMed  CAS  Google Scholar 

  21. Ogura A et al (2000) Production of male cloned mice from fresh, cultured, and cryopreserved immature Sertoli cells. (Translated from eng). Biol Reprod 62(6):1579–1584

    Article  PubMed  CAS  Google Scholar 

  22. Saito M, Saga A, Matsuoka H (2004) Production of a cloned mouse by nuclear transfer from a fetal fibroblast cell of a mouse closed colony strain. (Translated from eng). Exp Anim 53(5):467–469

    Article  PubMed  CAS  Google Scholar 

  23. Kato Y et al (2004) Nuclear transfer of adult bone marrow mesenchymal stem cells: developmental totipotency of tissue-specific stem cells from an adult mammal. (Translated from eng). Biol Reprod 70(2):415–418

    Article  PubMed  CAS  Google Scholar 

  24. Mizutani E et al (2006) Developmental ability of cloned embryos from neural stem cells. (Translated from eng). Reproduction (Cambridge, England) 132(6):849–857

    Article  CAS  Google Scholar 

  25. Inoue K et al (2006) Inefficient reprogramming of the hematopoietic stem cell genome following nuclear transfer. (Translated from eng). J Cell Sci 119(Pt 10):1985–1991

    Article  PubMed  CAS  Google Scholar 

  26. Kishikawa H, Wakayama T, Yanagimachi R (1999) Comparison of oocyte-activating agents for mouse cloning. (Translated from eng). Cloning 1(3):153–159

    Article  PubMed  CAS  Google Scholar 

  27. Wakayama T, Yanagimachi R (2001) Effect of cytokinesis inhibitors, DMSO and the timing of oocyte activation on mouse cloning using cumulus cell nuclei. (Translated from eng). Reproduction (Cambridge, England) 122(1):49–60

    Article  CAS  Google Scholar 

  28. Wakayama S, Cibelli JB, Wakayama T (2003) Effect of timing of the removal of oocyte chromosomes before or after injection of somatic nucleus on development of NT embryos. (Translated from eng). Cloning Stem Cells 5(3):181–189

    Article  PubMed  CAS  Google Scholar 

  29. Boiani M, Eckardt S, Leu NA, Scholer HR, McLaughlin KJ (2003) Pluripotency deficit in clones overcome by clone-clone aggregation: epigenetic complementation? (Translated from eng). EMBO J 22(19):5304–5312

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Enright BP, Kubota C, Yang X, Tian XC (2003) Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin A or 5-aza-2'-deoxycytidine. Biol Reprod 69(3):896–901

    Article  PubMed  CAS  Google Scholar 

  31. Shi W et al (2003) Induction of a senescent-like phenotype does not confer the ability of bovine immortal cells to support the development of nuclear transfer embryos. Biol Reprod 69(1):301–309

    Article  PubMed  CAS  Google Scholar 

  32. Bui HT et al (2008) The cytoplasm of mouse germinal vesicle stage oocytes can enhance somatic cell nuclear reprogramming. Development 135(23):3935–3945

    Article  PubMed  CAS  Google Scholar 

  33. Kishigami S et al (2006) Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. (Translated from eng). Biochem Biophys Res Commun 340(1):183–189

    Article  PubMed  CAS  Google Scholar 

  34. Rybouchkin A, Kato Y, Tsunoda Y (2006) Role of histone acetylation in reprogramming of somatic nuclei following nuclear transfer. (Translated from eng). Biol Reprod 74(6):1083–1089

    Article  PubMed  CAS  Google Scholar 

  35. Van Thuan N et al (2009) The histone deacetylase inhibitor scriptaid enhances nascent mRNA production and rescues full-term development in cloned inbred mice. (Translated from eng). Reproduction (Cambridge, England) 138(2):309–317

    Article  Google Scholar 

  36. Ono T et al (2010) Inhibition of class IIb histone deacetylase significantly improves cloning efficiency in mice. Biol Reprod 83(6):929–937

    Article  PubMed  CAS  Google Scholar 

  37. Wakayama S et al (2013) Successful serial recloning in the mouse over multiple generations. Cell Stem Cell 12(3):293–297

    Article  PubMed  CAS  Google Scholar 

  38. Inoue K et al (2010) Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer. Science (New York, NY) 330(6003):496–499

    Article  CAS  Google Scholar 

  39. Matoba S et al (2011) RNAi-mediated knockdown of Xist can rescue the impaired postimplantation development of cloned mouse embryos. Proc Natl Acad Sci U S A 108(51):20621–20626

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Oikawa M et al (2013) RNAi-mediated knockdown of Xist does not rescue the impaired development of female cloned mouse embryos. J Reprod Dev 59(3):231–237

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Terashita Y et al (2012) Latrunculin A can improve the birth rate of cloned mice and simplify the nuclear transfer protocol by gently inhibiting actin polymerization. Biol Reprod 86(6):180

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Mizutani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mizutani, E., Wakayama, S., Wakayama, T. (2015). Treatment of Donor Cell/Embryo with Different Approaches to Improve Development After Nuclear Transfer. In: Beaujean, N., Jammes, H., Jouneau, A. (eds) Nuclear Reprogramming. Methods in Molecular Biology, vol 1222. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1594-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1594-1_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1593-4

  • Online ISBN: 978-1-4939-1594-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics