Skip to main content

Protein Tyrosine Phosphatases in Mast Cell Signaling

  • Protocol
  • First Online:
Book cover Mast Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1220))

Abstract

For a time, mast cells were viewed as simple granulocytic effector cells that mediate allergic symptoms. More recent discoveries show that mast cells can also function as potent pro- and anti-inflammatory immune regulators in a plethora of human diseases. Much of the current knowledge about mast cell functions comes from studies on rodent models. The membrane receptors for antigen/IgE and growth factors are the core initiators of signaling cascades that trigger various mast cell responses. Yet, the regulation and multifunctionality of key receptor-proximal protein tyrosine phosphorylation events are still not well understood. The roles of the members of the protein tyrosine phosphatase superfamily of enzymes in regulating mast cell development, survival, and immune activation will be reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gilfillan AM, Tkaczyk C (2006) Integrated signalling pathways for mast-cell activation. Nat Rev Immunol 6:218–230

    Article  CAS  PubMed  Google Scholar 

  2. Gilfillan AM, Rivera J (2009) The tyrosine kinase network regulating mast cell activation. Immunol Rev 228:149–169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Alvarez-Errico D, Lessmann E, Rivera J (2009) Adapters in the organization of mast cell signaling. Immunol Rev 232:195–217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T (2004) Protein tyrosine phosphatases in the human genome. Cell 117: 699–711

    Article  CAS  PubMed  Google Scholar 

  5. Andersen JN, Mortensen OH, Peters GH, Drake PG, Iversen LF, Olsen OH, Jansen PG, Andersen HS, Tonks NK, Moller NP (2001) Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol Cell Biol 21:7117–7136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Tonks NK (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol 7:833–846

    Article  CAS  PubMed  Google Scholar 

  7. Rayapureddi JP, Kattamuri C, Steinmetz BD, Frankfort BJ, Ostrin EJ, Mardon G, Hegde RS (2003) Eyes absent represents a class of protein tyrosine phosphatases. Nature 426:295–298

    Article  CAS  PubMed  Google Scholar 

  8. Tootle TL, Silver SJ, Davies EL, Newman V, Latek RR, Mills IA, Selengut JD, Parlikar BE, Rebay I (2003) The transcription factor eyes absent is a protein tyrosine phosphatase. Nature 426:299–302

    Article  CAS  PubMed  Google Scholar 

  9. Li X, Oghi KA, Zhang J, Krones A, Bush KT, Glass CK, Nigam SK, Aggarwal AK, Maas R, Rose DW, Rosenfeld MG (2003) Eya protein phosphatase activity regulates Six1-dach-eya transcriptional effects in mammalian organogenesis. Nature 426:247–254

    Article  CAS  PubMed  Google Scholar 

  10. Okabe Y, Sano T, Nagata S (2009) Regulation of the innate immune response by threonine-phosphatase of eyes absent. Nature 460: 520–524

    CAS  PubMed  Google Scholar 

  11. Arimura Y, Yagi J (2010) Comprehensive expression profiles of genes for protein tyrosine phosphatases in immune cells. Sci Signal 3:rs1

    Article  PubMed  Google Scholar 

  12. Berger SA, Mak TW, Paige CJ (1994) Leukocyte common antigen (CD45) is required for immunoglobulin E-mediated degranulation of mast cells. J Exp Med 180:471–476

    Article  CAS  PubMed  Google Scholar 

  13. Murakami K, Sato S, Nagasawa S, Yamashita T (2000) Regulation of mast cell signaling through high-affinity IgE receptor by CD45 protein tyrosine phosphatase. Int Immunol 12:169–176

    Article  CAS  PubMed  Google Scholar 

  14. Grochowy G, Hermiston ML, Kuhny M, Weiss A, Huber M (2009) Requirement for CD45 in fine-tuning mast cell responses mediated by different ligand-receptor systems. Cell Signal 21:1277–1286

    Article  CAS  PubMed  Google Scholar 

  15. Zikherman J, Weiss A (2008) Alternative splicing of CD45: the tip of the iceberg. Immunity 29: 839–841

    Article  CAS  PubMed  Google Scholar 

  16. Saunders AE, Johnson P (2010) Modulation of immune cell signalling by the leukocyte common tyrosine phosphatase, CD45. Cell Signal 22:339–348

    Article  CAS  PubMed  Google Scholar 

  17. Hermiston ML, Xu Z, Weiss A (2003) CD45: a critical regulator of signaling thresholds in immune cells. Annu Rev Immunol 21: 107–137

    Article  CAS  PubMed  Google Scholar 

  18. Hamaguchi T, Takahashi A, Manaka A, Sato M, Osada H (2001) TU-572, a potent and selective CD45 inhibitor, suppresses IgE-mediated anaphylaxis and murine contact hypersensitivity reactions. Int Arch Allergy Immunol 126:318–324

    Article  CAS  PubMed  Google Scholar 

  19. Irie-Sasaki J, Sasaki T, Matsumoto W, Opavsky A, Cheng M, Welstead G, Griffiths E, Krawczyk C, Richardson CD, Aitken K, Iscove N, Koretzky G, Johnson P, Liu P, Rothstein DM, Penninger JM (2001) CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature 409:349–354

    Article  CAS  PubMed  Google Scholar 

  20. Samayawardhena LA, Pallen CJ (2010) PTPalpha activates lyn and fyn and suppresses hck to negatively regulate FcepsilonRI-dependent mast cell activation and allergic responses. J Immunol 185: 5993–6002

    Article  CAS  PubMed  Google Scholar 

  21. Akimoto M, Mishra K, Lim KT, Tani N, Hisanaga SI, Katagiri T, Elson A, Mizuno K, Yakura H (2009) Protein tyrosine phosphatase epsilon is a negative regulator of FcepsilonRI-mediated mast cell responses. Scand J Immunol 69:401–411

    Article  CAS  PubMed  Google Scholar 

  22. Pallen CJ (2003) Protein tyrosine phosphatase alpha (PTPalpha): a src family kinase activator and mediator of multiple biological effects. Curr Top Med Chem 3:821–835

    Article  CAS  PubMed  Google Scholar 

  23. Xiao W, Nishimoto H, Hong H, Kitaura J, Nunomura S, Maeda-Yamamoto M, Kawakami Y, Lowell CA, Ra C, Kawakami T (2005) Positive and negative regulation of mast cell activation by lyn via the FcepsilonRI. J Immunol 175:6885–6892

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Parravicini V, Gadina M, Kovarova M, Odom S, Gonzalez-Espinosa C, Furumoto Y, Saitoh S, Samelson LE, O'Shea JJ, Rivera J (2002) Fyn kinase initiates complementary signals required for IgE-dependent mast cell degranulation. Nat Immunol 3:741–748

    CAS  PubMed  Google Scholar 

  25. Odom S, Gomez G, Kovarova M, Furumoto Y, Ryan JJ, Wright HV, Gonzalez-Espinosa C, Hibbs ML, Harder KW, Rivera J (2004) Negative regulation of immunoglobulin E-dependent allergic responses by lyn kinase. J Exp Med 199: 1491–1502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Hernandez-Hansen V, Smith AJ, Surviladze Z, Chigaev A, Mazel T, Kalesnikoff J, Lowell CA, Krystal G, Sklar LA, Wilson BS, Oliver JM (2004) Dysregulated FcepsilonRI signaling and altered fyn and SHIP activities in lyn-deficient mast cells. J Immunol 173:100–112

    Article  CAS  PubMed  Google Scholar 

  27. Gil-Henn H, Elson A (2003) Tyrosine phosphatase-epsilon activates src and supports the transformed phenotype of neu-induced mammary tumor cells. J Biol Chem 278: 15579–15586

    Article  CAS  PubMed  Google Scholar 

  28. Samayawardhena LA, Pallen CJ (2008) Protein-tyrosine phosphatase alpha regulates stem cell factor-dependent c-kit activation and migration of mast cells. J Biol Chem 283: 29175–29185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kamata T, Yamashita M, Kimura M, Murata K, Inami M, Shimizu C, Sugaya K, Wang CR, Taniguchi M, Nakayama T (2003) Src homology 2 domain-containing tyrosine phosphatase SHP-1 controls the development of allergic airway inflammation. J Clin Invest 111: 109–119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Nakata K, Suzuki Y, Inoue T, Ra C, Yakura H, Mizuno K (2011) Deficiency of SHP1 leads to sustained and increased ERK activation in mast cells, thereby inhibiting IL-3-dependent proliferation and cell death. Mol Immunol 48: 472–480

    Article  CAS  PubMed  Google Scholar 

  31. Zhang J, Somani AK, Siminovitch KA (2000) Roles of the SHP-1 tyrosine phosphatase in the negative regulation of cell signalling. Semin Immunol 12:361–378

    Article  CAS  PubMed  Google Scholar 

  32. Songyang Z, Shoelson SE, Chaudhuri M, Gish G, Pawson T, Haser WG, King F, Roberts T, Ratnofsky S, Lechleider RJ (1993) SH2 domains recognize specific phosphopeptide sequences. Cell 72:767–778

    Article  CAS  PubMed  Google Scholar 

  33. Green MC, Shultz LD (1975) Motheaten, an immunodeficient mutant of the mouse. I. Genetics and pathology. J Hered 66:250–258

    CAS  PubMed  Google Scholar 

  34. Bignon JS, Siminovitch KA (1994) Identification of PTP1C mutation as the genetic defect in motheaten and viable motheaten mice: a step toward defining the roles of protein tyrosine phosphatases in the regulation of hemopoietic cell differentiation and function. Clin Immunol Immunopathol 73: 168–179

    Article  CAS  PubMed  Google Scholar 

  35. Zhang L, Oh SY, Wu X, Oh MH, Wu F, Schroeder JT, Takemoto CM, Zheng T, Zhu Z (2010) SHP-1 deficient mast cells are hyperresponsive to stimulation and critical in initiating allergic inflammation in the lung. J Immunol 184:1180–1190

    Article  CAS  PubMed  Google Scholar 

  36. Shultz LD, Coman DR, Bailey CL, Beamer WG, Sidman CL (1984) “Viable motheaten,” a new allele at the motheaten locus. I. Pathology. Am J Pathol 116:179–192

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Paulson RF, Vesely S, Siminovitch KA, Bernstein A (1996) Signalling by the W/Kit receptor tyrosine kinase is negatively regulated in vivo by the protein tyrosine phosphatase Shp1. Nat Genet 13:309–315

    Article  CAS  PubMed  Google Scholar 

  38. Inoue T, Suzuki Y, Mizuno K, Nakata K, Yoshimaru T, Ra C (2009) SHP-1 exhibits a pro-apoptotic function in antigen-stimulated mast cells: positive regulation of mitochondrial death pathways and negative regulation of survival signaling pathways. Mol Immunol 47: 222–232

    Article  CAS  PubMed  Google Scholar 

  39. Xiao W, Kashiwakura J, Hong H, Yasudo H, Ando T, Maeda-Yamamoto M, Wu D, Kawakami Y, Kawakami T (2011) Phospholipase C-beta3 regulates FcvarepsilonRI-mediated mast cell activation by recruiting the protein phosphatase SHP-1. Immunity 34:893–904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Xiao W, Ando T, Wang HY, Kawakami Y, Kawakami T (2010) Lyn- and PLC-beta3-dependent regulation of SHP-1 phosphorylation controls Stat5 activity and myelomonocytic leukemia-like disease. Blood 116:6003–6013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Ozawa T, Nakata K, Mizuno K, Yakura H (2007) Negative autoregulation of src homology region 2-domain-containing phosphatase-1 in rat basophilic leukemia-2H3 cells. Int Immunol 19:1049–1061

    Article  CAS  PubMed  Google Scholar 

  42. Xie ZH, Zhang J, Siraganian RP (2000) Positive regulation of c-jun N-terminal kinase and TNF-alpha production but not histamine release by SHP-1 in RBL-2H3 mast cells. J Immunol 164:1521–1528

    Article  CAS  PubMed  Google Scholar 

  43. Nakata K, Yoshimaru T, Suzuki Y, Inoue T, Ra C, Yakura H, Mizuno K (2008) Positive and negative regulation of high affinity IgE receptor signaling by src homology region 2 domain-containing phosphatase 1. J Immunol 181: 5414–5424

    Article  CAS  PubMed  Google Scholar 

  44. Chihara K, Nakashima K, Takeuchi K, Sada K (2011) Association of 3BP2 with SHP-1 regulates SHP-1-mediated production of TNF-alpha in RBL-2H3 cells. Genes Cells 16: 1133–1145

    Article  CAS  PubMed  Google Scholar 

  45. Neel BG (1993) Structure and function of SH2-domain containing tyrosine phosphatases. Semin Cell Biol 4:419–432

    Article  CAS  PubMed  Google Scholar 

  46. Soulsby M, Bennett AM (2009) Physiological signaling specificity by protein tyrosine phosphatases. Physiology 24:281–289

    Article  CAS  PubMed  Google Scholar 

  47. Chong ZZ, Maiese K (2007) The src homology 2 domain tyrosine phosphatases SHP-1 and SHP-2: diversified control of cell growth, inflammation, and injury. Histol Histopathol 22:1251–1267

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Zou GM, Chan RJ, Shelley WC, Yoder MC (2006) Reduction of shp-2 expression by small interfering RNA reduces murine embryonic stem cell-derived in vitro hematopoietic differentiation. Stem Cells 24:587–594

    Article  CAS  PubMed  Google Scholar 

  49. Kozlowski M, Larose L, Lee F, Le DM, Rottapel R, Siminovitch KA (1998) SHP-1 binds and negatively modulates the c-kit receptor by interaction with tyrosine 569 in the c-kit juxtamembrane domain. Mol Cell Biol 18: 2089–2099

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Yu M, Luo J, Yang W, Wang Y, Mizuki M, Kanakura Y, Besmer P, Neel BG, Gu H (2006) The scaffolding adapter Gab2, via shp-2, regulates kit-evoked mast cell proliferation by activating the Rac/JNK pathway. J Biol Chem 281:28615–28626

    Article  CAS  PubMed  Google Scholar 

  51. Kimura T, Zhang J, Sagawa K, Sakaguchi K, Appella E, Siraganian RP (1997) Syk-independent tyrosine phosphorylation and association of the protein tyrosine phosphatases SHP-1 and SHP-2 with the high affinity IgE receptor. J Immunol 159:4426–4434

    CAS  PubMed  Google Scholar 

  52. Yamashita T, Suzuki R, Backlund PS, Yamashita Y, Yergey AL, Rivera J (2008) Differential dephosphorylation of the FcRgamma immunoreceptor tyrosine-based activation motif tyrosines with dissimilar potential for activating syk. J Biol Chem 283:28584–28594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Lu-Kuo JM, Joyal DM, Austen KF, Katz HR (1999) gp49B1 inhibits IgE-initiated mast cell activation through both immunoreceptor tyrosine-based inhibitory motifs, recruitment of src homology 2 domain-containing phosphatase-1, and suppression of early and late calcium mobilization. J Biol Chem 274:5791–5796

    Article  CAS  PubMed  Google Scholar 

  54. Daheshia M, Friend DS, Grusby MJ, Austen KF, Katz HR (2001) Increased severity of local and systemic anaphylactic reactions in gp49B1-deficient mice. J Exp Med 194:227–234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. McPherson VA, Sharma N, Everingham S, Smith J, Zhu HH, Feng GS, Craig AW (2009) SH2 domain-containing phosphatase-2 protein-tyrosine phosphatase promotes fc epsilon RI- induced activation of fyn and erk pathways leading to TNF alpha release from bone marrow-derived mast cells. J Immunol 183:4940–4947

    Article  CAS  PubMed  Google Scholar 

  56. Obiri DD, Flink N, Maier JV, Neeb A, Maddalo D, Thiele W, Menon A, Stassen M, Kulkarni RA, Garabedian MJ, Barrios AM, Cato AC (2012) PEST-domain-enriched tyrosine phosphatase and glucocorticoids as regulators of anaphylaxis in mice. Allergy 67:175–182

    Article  CAS  PubMed  Google Scholar 

  57. Gjorloff-Wingren A, Saxena M, Williams S, Hammi D, Mustelin T (1999) Characterization of TCR-induced receptor-proximal signaling events negatively regulated by the protein tyrosine phosphatase PEP. Eur J Immunol 29: 3845–3854

    Article  CAS  PubMed  Google Scholar 

  58. Swieter M, Berenstein EH, Swaim WD, Siraganian RP (1995) Aggregation of IgE receptors in rat basophilic leukemia 2H3 cells induces tyrosine phosphorylation of the cytosolic protein-tyrosine phosphatase HePTP. J Biol Chem 270:21902–21906

    Article  CAS  PubMed  Google Scholar 

  59. Pettiford SM, Herbst R (2000) The MAP-kinase ERK2 is a specific substrate of the protein tyrosine phosphatase HePTP. Oncogene 19:858–869

    Article  CAS  PubMed  Google Scholar 

  60. Wang X, Huynh H, Gjorloff-Wingren A, Monosov E, Stridsberg M, Fukuda M, Mustelin T (2002) Enlargement of secretory vesicles by protein tyrosine phosphatase PTP-MEG2 in rat basophilic leukemia mast cells and jurkat T cells. J Immunol 168:4612–4619

    Article  CAS  PubMed  Google Scholar 

  61. Patterson KI, Brummer T, O'Brien PM, Daly RJ (2009) Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem J 418:475–489

    CAS  PubMed  Google Scholar 

  62. Maier JV, Brema S, Tuckermann J, Herzer U, Klein M, Stassen M, Moorthy A, Cato AC (2007) Dual specificity phosphatase 1 knockout mice show enhanced susceptibility to anaphylaxis but are sensitive to glucocorticoids. Mol Endocrinol 21:2663–2671

    Article  CAS  PubMed  Google Scholar 

  63. Kassel O, Sancono A, Kratzschmar J, Kreft B, Stassen M, Cato AC (2001) Glucocorticoids inhibit MAP kinase via increased expression and decreased degradation of MKP-1. EMBO J 20:7108–7116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Craig AW, Greer PA (2002) Fer kinase is required for sustained p38 kinase activation and maximal chemotaxis of activated mast cells. Mol Cell Biol 22:6363–6374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Jeong HJ, Na HJ, Hong SH, Kim HM (2003) Inhibition of the stem cell factor-induced migration of mast cells by dexamethasone. Endocrinology 144:4080–4086

    Article  CAS  PubMed  Google Scholar 

  66. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275: 1943–1947

    Article  CAS  PubMed  Google Scholar 

  67. Furumoto Y, Charles N, Olivera A, Leung WH, Dillahunt S, Sargent JL, Tinsley K, Odom S, Scott E, Wilson TM, Ghoreschi K, Kneilling M, Chen M, Lee DM, Bolland S, Rivera J (2011) PTEN deficiency in mast cells causes a mastocytosis-like proliferative disease that heightens allergic responses and vascular permeability. Blood 118:5466–5475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Swindle EJ, Metcalfe DD (2007) The role of reactive oxygen species and nitric oxide in mast cell-dependent inflammatory processes. Immunol Rev 217:186–205

    Article  CAS  PubMed  Google Scholar 

  69. Wolfreys K, Oliveira DB (1997) Alterations in intracellular reactive oxygen species generation and redox potential modulate mast cell function. Eur J Immunol 27:297–306

    Article  CAS  PubMed  Google Scholar 

  70. Teshima R, Ikebuchi H, Nakanishi M, Sawada J (1994) Stimulatory effect of pervanadate on calcium signals and histamine secretion of RBL-2H3 cells. Biochem J 302(Pt 3): 867–874

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Heneberg P, Draberova L, Bambouskova M, Pompach P, Draber P (2010) Down-regulation of protein-tyrosine phosphatases activates an immune receptor in the absence of its translocation into lipid rafts. J Biol Chem 285: 12787–12802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Heneberg P, Draber P (2005) Regulation of cys-based protein tyrosine phosphatases via reactive oxygen and nitrogen species in mast cells and basophils. Curr Med Chem 12: 1859–1871

    Article  CAS  PubMed  Google Scholar 

  73. Tertoolen LG, Blanchetot C, Jiang G, Overvoorde J, Gadella TW Jr, Hunter T, den Hertog J (2001) Dimerization of receptor protein-tyrosine phosphatase alpha in living cells. BMC Cell Biol 2:8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Groen A, Overvoorde J, van der Wijk T, den Hertog J (2008) Redox regulation of dimerization of the receptor protein-tyrosine phosphatases RPTPalpha, LAR, RPTPmu and CD45. FEBS J 275:2597–2604

    Article  CAS  PubMed  Google Scholar 

  75. Gilfillan AM, Austin SJ, Metcalfe DD (2011) Mast cell biology: Introduction and overview. Adv Exp Med Biol 716:2–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Kalesnikoff J, Galli SJ (2008) New developments in mast cell biology. Nat Immunol 9:1215–1223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Lu LF, Lind EF, Gondek DC, Bennett KA, Gleeson MW, Pino-Lagos K, Scott ZA, Coyle AJ, Reed JL, Van Snick J, Strom TB, Zheng XX, Noelle RJ (2006) Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442:997–1002

    Article  CAS  PubMed  Google Scholar 

  78. Grimbaldeston MA, Nakae S, Kalesnikoff J, Tsai M, Galli SJ (2007) Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nat Immunol 8:1095–1104

    Article  CAS  PubMed  Google Scholar 

  79. Maltby S, Khazaie K, McNagny KM (2009) Mast cells in tumor growth: angiogenesis, tissue remodelling and immune-modulation. Biochim Biophys Acta 1796:19–26

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Blatner NR, Bonertz A, Beckhove P, Cheon EC, Krantz SB, Strouch M, Weitz J, Koch M, Halverson AL, Bentrem DJ, Khazaie K (2010) In colorectal cancer mast cells contribute to systemic regulatory T-cell dysfunction. Proc Natl Acad Sci U S A 107: 6430–6435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Soucek L, Lawlor ER, Soto D, Shchors K, Swigart LB, Evan GI (2007) Mast cells are required for angiogenesis and macroscopic expansion of myc-induced pancreatic islet tumors. Nat Med 13:1211–1218

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine J. Pallen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Geldman, A., Pallen, C.J. (2015). Protein Tyrosine Phosphatases in Mast Cell Signaling. In: Hughes, M., McNagny, K. (eds) Mast Cells. Methods in Molecular Biology, vol 1220. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1568-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1568-2_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1567-5

  • Online ISBN: 978-1-4939-1568-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics