Skip to main content

Delivery of siRNAs to Cancer Cells via Bacteria

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1218))

Abstract

RNA interference (RNAi) technology is a promising approach for efficient silencing of a particular gene for cancer gene therapy. However, the main obstacle for the development of RNAi-based therapeutic approaches is the delivery of the RNAi effector molecules to target cells. One promising strategy to surmount this challenge is the application of nonpathogenic bacteria as a delivery vector to target cells. In this chapter, the design of invasive Escherichia coli is described. The strain carries a plasmid encoding short hairpin RNAs (shRNAs), a protein (invasin) necessary for endocytotic absorption of the bacteria by target cells, and listeriolysin O required for the lysis of endocytotic vesicles within the target cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  2. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  PubMed  CAS  Google Scholar 

  3. Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  PubMed  CAS  Google Scholar 

  4. Dorsett Y, Tuschl T (2004) siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 3:318–329

    Article  PubMed  CAS  Google Scholar 

  5. Martin SE, Caplen NJ (2007) Application of RNA interference in mammalian systems. Annu Rev Genomics Hum Genet 8:81–108

    Article  PubMed  CAS  Google Scholar 

  6. Lage H (2009) Therapeutic potential of RNA interference in drug-resistant cancers. Fut Oncol 5:169–185

    Article  CAS  Google Scholar 

  7. Yang N-S, Burkholder J, Roberts B, Martinell B, McCabe D (1990) In vivo and in vitro gene transfer to mammalian cells by particle bombardment. Proc Natl Acad Sci U S A 87:9568–9572

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Furth PA, Shamay A, Wall RJ, Hennighausen L (1992) Gene transfer into somatic tissue by jet injection. Anal Biochem 205:365–368

    Article  PubMed  CAS  Google Scholar 

  9. Sikes ML, O’Malley BW, Finegold MJ, Ledley FD (1994) In vivo gene transfer into rabbit thyroid follicular cells by direct DNA injection. Hum Gene Ther 6:837–844

    Article  Google Scholar 

  10. Aihara H, Miyazaki J-I (1998) Gene transfer into muscle by electroporation in vivo. Nat Biotechnol 16:867–870

    Article  PubMed  CAS  Google Scholar 

  11. Kanasty RL, Whitehead KA, Vegas AJ, Anderson DG (2012) Action and reaction: the biological response to siRNA and its delivery vehicles. Mol Ther 20:513–524

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Nguyen J, Szoka FC (2012) Nucleic acid delivery: the missing pieces of the puzzle? Acc Chem Res 17:1153–1162

    Article  Google Scholar 

  13. Kong Y, Ruan L, Ma L, Cui Y, Wang JM, Le Y (2007) RNA interference as a novel and powerful tool in immunopharmacological research. Int Immunopharmacol 7:417–426

    Article  PubMed  CAS  Google Scholar 

  14. Beyerle A, Irmler M, Beckers J, Kissel T, Stoeger T (2010) Toxicity pathway focused gene expression profiling of PEI-based polymers for pulmonary applications. Mol Pharm 7:727–737

    Article  PubMed  CAS  Google Scholar 

  15. Lage H, Fruehauf JH (2011) Delivery of therapeutic RNA molecules to cancer cells by bacteria. Ther Deliv 2:441–449

    Article  PubMed  Google Scholar 

  16. Xiang S, Fruehauf J, Li CJ (2006) Short hairpin RNA-expressing bacteria elicit RNA interference in mammals. Nat Biotechnol 24:697–702

    Article  PubMed  CAS  Google Scholar 

  17. Nguyen T, Fruehauf J (2008) Bacterial vectors for RNAi delivery. In: Slato R, Hill C (eds) Patho-biotechnology. Landes Bioscience and Springer Science, Austin, TX, pp 121–125

    Google Scholar 

  18. Lage H, Krühn A (2010) Bacterial delivery of RNAi effectors: transkingdom RNAi. J Vis Exp 42:2099, http://www.jove.com/details.stp?id=2099. doi:10.3791/2099

    PubMed  Google Scholar 

  19. Maizels NM (1973) The nucleotide sequence of the lactose messenger ribonucleic acid transcribed from the UV5 promoter mutant of Escherichia coli. Proc Natl Acad Sci U S A 70:3585–3589

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Bolduc GR, Fruehauf JH, Laroux FS, Sexton JA, Vaze MB (2011) WO 2010057009 A1

    Google Scholar 

  21. Jagielski M, Zaleska M, Kaluzwski S, Polna I (1976) Applicability of DAPI for the detection of mycoplasms in cell cultures. Med Dosw Mikrobiol 28:161–173

    PubMed  CAS  Google Scholar 

  22. Miliotis MD (1991) Acridine orange stain for determining intracellular enteropathogens in HeLa cells. J Clin Microbiol 29:830–831

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

Own experiments for overcoming cancer MDR by RNAi were supported by grants LA 1039/2-1, LA 1039/2-3, and LA 1039/5-1 of the “Deutsche Forschungsgemeinschaft” (DFG), and by the “RNA-network” funded by the “Bundesministerium für Bildung und Forschung” (BMBF) and Berlin by grant no. 01GU0615 of the BMBF as well as the “Deutscher Akademischer Austauschdienst” (DAAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Lage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ahmed, O., Krühn, A., Lage, H. (2015). Delivery of siRNAs to Cancer Cells via Bacteria. In: Sioud, M. (eds) RNA Interference. Methods in Molecular Biology, vol 1218. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1538-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1538-5_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1537-8

  • Online ISBN: 978-1-4939-1538-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics