Skip to main content

Imaging Plasmodesmata with High-Resolution Scanning Electron Microscopy

  • Protocol
  • First Online:
Plasmodesmata

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1217))

  • 3621 Accesses

Abstract

High-resolution scanning electron microscopy (HRSEM) is an effective tool to investigate the distribution of plasmodesmata within plant cell walls as well as to probe their complex, three-dimensional architecture. It is a useful alternative to traditional transmission electron microscopy (TEM) in which plasmodesmata are sectioned to reveal their internal substructures. Benefits of adopting an HRSEM approach to studies of plasmodesmata are that the specimen preparation methods are less complex and time consuming than for TEM, many plasmodesmata within a large region of tissue can be imaged in a single session, and three-dimensional information is readily available without the need for reconstructing TEM serial sections or employing transmission electron tomography, both of which are lengthy processes. Here we describe methods to prepare plant samples for HRSEM using pre- or postfixation extraction of cellular material in order to visualize plasmodesmata embedded within plant cell walls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jahn KA, Barton DA, Kobayashi K et al (2011) Correlative microscopy: providing new understanding in the biomedical and plant sciences. Micron 43:565–582

    Article  PubMed  Google Scholar 

  2. Fitzgibbon J, Bell K, King E et al (2010) Super-resolution imaging of plasmodesmata using three-dimensional structured illumination microscopy. Plant Physiol 153:1453–1463

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Bell K, Oparka K (2011) Imaging plasmodesmata. Protoplasma 248:9–25

    Article  PubMed  Google Scholar 

  4. Overall RL, Wolfe J, Gunning BES (1982) Intercellular communication in Azolla roots: I. Ultrastructure of plasmodesmata. Protoplasma 111:134–150

    Article  Google Scholar 

  5. White RG, Badelt K, Overall RL et al (1994) Actin associated with plasmodesmata. Protoplasma 180:169–184

    Article  CAS  Google Scholar 

  6. Radford JE, Vesk M, Overall RL (1998) Callose deposition at plasmodesmata. Protoplasma 201:30–37

    Article  CAS  Google Scholar 

  7. Bilska A, Sowinski P (2010) Closure of plasmodesmata in maize (Zea mays) at low temperature: a new mechanism for inhibition of photosynthesis. Ann Bot 106:675–686

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Faulkner C, Akman OE, Bell K et al (2008) Peeking into pit fields: a multiple twinning model of secondary plasmodesmata formation in tobacco. Plant Cell 20:1504–1518

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Brecknock S, Dibbayawan TP, Vesk M et al (2011) High resolution scanning electron microscopy of plasmodesmata. Planta 234:749–758

    Article  PubMed  CAS  Google Scholar 

  10. Vesk M, Dibbayawan TP, Vesk PA et al (2000) Field emission scanning electron microscopy of plant cells. Protoplasma 210:138–155

    Article  Google Scholar 

  11. Sugimoto K, Williamson RE, Wasteneys GO (2000) New techniques enable comparative analysis of microtubule orientation, wall texture, and growth rate in intact roots of Arabidopsis. Plant Physiol 124:1493–1506

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Barton DA, Vantard M, Overall RL (2008) Analysis of cortical arrays from Tradescantia virginiana at high resolution reveals discrete microtubule subpopulations and demonstrates that confocal images of arrays can be misleading. Plant Cell 20:982–994

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Lang I, Barton DA, Overall RL (2004) Membrane-wall attachments in plasmolysed plant cells. Protoplasma 224:231–243

    Article  PubMed  CAS  Google Scholar 

  14. Vesk PA, Vesk M, Gunning BES (1996) Field emission scanning electron microscopy of microtubule arrays in higher plant cells. Protoplasma 195:168–182

    Article  Google Scholar 

  15. Bray D (2000) Critical point drying of biological specimens for scanning electron microscopy. Method Biotechnol 13:235–243

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robyn L. Overall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Barton, D.A., Overall, R.L. (2015). Imaging Plasmodesmata with High-Resolution Scanning Electron Microscopy. In: Heinlein, M. (eds) Plasmodesmata. Methods in Molecular Biology, vol 1217. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1523-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1523-1_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1522-4

  • Online ISBN: 978-1-4939-1523-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics