Skip to main content

GAL4 Transactivation-Based Assay for the Detection of Selective Intercellular Protein Movement

  • Protocol
  • First Online:
Plasmodesmata

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1217))

  • 3696 Accesses

Abstract

Several plant proteins function as intercellular messenger to specify cell fate and coordinate plant development. Such intercellular communication can be achieved by direct, selective, or nonselective (diffusion-based) trafficking through plasmodesmata (PD), the symplasmic membrane-lined nanochannels adjoining two cells. A trichome rescue trafficking assay was reported to allow the detection of protein movement in Arabidopsis leaf tissue using transgenic gene expression. Here, we provide a protocol to dissect the mode of intercellular protein movement in Arabidopsis root. This assay system involves a root ground tissue-specific GAL4/UAS transactivation expression system in combination with fluorescent reporter proteins. In this system, mCherry, a red fluorescent protein, can move cell to cell via diffusion, while mCherry-H2B is tightly cell autonomous. Thus, a protein fused to mCherry-H2B that can move out from the site of synthesis likely contains a selective trafficking signal to impart a cell-to-cell gain-of-trafficking function to the cell-autonomous mCherry-H2B. This approach can be adapted to investigate the cell-to-cell trafficking properties of any protein of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crawford KM, Zambryski PC (2000) Subcellular localization determines the availability of non-targeted proteins to plasmodesmatal transport. Curr Biol 10:1032–1040

    Article  PubMed  CAS  Google Scholar 

  2. Lucas WJ, Lee JY (2004) Plasmodesmata as a supracellular control network in plants. Nat Rev Mol Cell Biol 5:712–726

    Article  PubMed  CAS  Google Scholar 

  3. Oparka KJ (2004) Getting the message across: how do plant cells exchange macromolecular complexes? Trends Plant Sci 9:33–41

    Article  PubMed  CAS  Google Scholar 

  4. Wu X, Dinneny JR, Crawford KM, Rhee Y, Citovsky V, Zambryski PC (2003) Modes of intercellular transcription factor movement in the Arabidopsis apex. Development 130:3735–3745

    Article  PubMed  CAS  Google Scholar 

  5. Parcy F, Nilsson O, Busch MA, Lee I, Weigel D (1998) A genetic framework for floral patterning. Nature 395:561–566

    Article  PubMed  CAS  Google Scholar 

  6. Lucas WJ, Bouche-Pillon S, Jackson DP, Nguyen L, Baker L, Ding B, Hake S (1995) Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science 270:1980–1983

    Article  PubMed  CAS  Google Scholar 

  7. Sessions A, Yanofsky MF, Weigel D (2000) Cell-cell signaling and movement by the floral transcription factors LEAFY and APETALA1. Science 289:779–782

    Article  PubMed  CAS  Google Scholar 

  8. Kim JY, Yuan Z, Cilia M, Khalfan-Jagani Z, Jackson D (2002) Intercellular trafficking of a KNOTTED1 green fluorescent protein fusion in the leaf and shoot meristem of Arabidopsis. Proc Natl Acad Sci U S A 99:4103–4108

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Xu XM, Wang J, Xuan Z, Goldshmidt A, Borrill PG, Hariharan N, Kim JY, Jackson D (2011) Chaperonins facilitate KNOTTED1 cell-to-cell trafficking and stem cell function. Science 333:1141–1144

    Article  PubMed  CAS  Google Scholar 

  10. Perbal MC, Haughn G, Saedler H, Schwarz-Sommer Z (1996) Non-cell-autonomous function of the Antirrhinum floral homeotic proteins DEFICIENS and GLOBOSA is exerted by their polar cell-to-cell trafficking. Development 122:3433–3441

    PubMed  CAS  Google Scholar 

  11. Nakajima K, Sena G, Nawy T, Benfey PN (2001) Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413:307–311

    Article  PubMed  CAS  Google Scholar 

  12. Wada T, Kurata T, Tominaga R, Koshino-Kimura Y, Tachibana T, Goto K, Marks MD, Shimura Y, Okada K (2002) Role of a positive regulator of root hair development, CAPRICE, in Arabidopsis root epidermal cell differentiation. Development 129:5409–5419

    Article  PubMed  CAS  Google Scholar 

  13. Kurata T, Ishida T, Kawabata-Awai C, Noguchi M, Hattori S, Sano R, Nagasaka R, Tominaga R, Koshino-Kimura Y, Kato T, Sato S, Tabata S, Okada K, Wada T (2005) Cell-to-cell movement of the CAPRICE protein in Arabidopsis root epidermal cell differentiation. Development 132:5387–5398

    Article  PubMed  CAS  Google Scholar 

  14. Rim Y, Huang L, Chu H, Han X, Cho WK, Lucas WJ, Kim JY (2011) Analysis of Arabidopsis transcription factor families revealed extensive capacity for cell-to-cell movement as well as discrete trafficking patterns. Mol Cells 32:519–526

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Kim JY, Rim Y, Wang J, Jackson D (2005) A novel cell-to-cell trafficking assay indicates that the KNOX homeodomain is necessary and sufficient for intercellular protein and mRNA trafficking. Genes Dev 19:788–793

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Ahmad M, Cho WK, Rim Y, Huang L, Kim JY (2011) How to assess the intercellular trafficking of transcription factors. In: Yuan L, Perry ES (eds) Methods in molecular biology. Humana Press, New York, p 235

    Google Scholar 

  17. Chen H, Ahmad M, Rim Y, Lucas WJ, Kim JY (2013) Evolutionary and molecular analysis of Dof transcription factors identified a conserved motif for intercellular protein trafficking. New Phytol 198:1250–1260

    Article  PubMed  CAS  Google Scholar 

  18. Boisnard-Lorig C, Colon-Carmona A, Bauch M, Hodge S, Doerner P, Bancharel E, Dumas C, Haseloff J, Berger F (2001) Dynamic analyses of the expression of the HISTONE:YFP fusion protein in Arabidopsis show that syncytial endosperm is divided in mitotic domains. Plant Cell 13:495–509

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Roger Tsien for providing the mCherry construct and Jim Haseloff for seeds of the J0571 plant line. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2013R1A1A2007230) and by a grant from the Next-Generation BioGreen 21 Program (SSAC, grant PJ009495), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Yean Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kumar, D., Chen, H., Rim, Y., Kim, JY. (2015). GAL4 Transactivation-Based Assay for the Detection of Selective Intercellular Protein Movement. In: Heinlein, M. (eds) Plasmodesmata. Methods in Molecular Biology, vol 1217. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1523-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1523-1_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1522-4

  • Online ISBN: 978-1-4939-1523-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics