Skip to main content

Plasmodesmata: Channels for Intercellular Signaling During Plant Growth and Development

  • Protocol
  • First Online:
Plasmodesmata

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1217))

Abstract

Plants have evolved strategies for short- and long-distance communication to coordinate plant development and to adapt to changing environmental conditions. Plasmodesmata (PD) are intercellular nanochannels that provide an effective pathway for both selective and nonselective movement of various molecules that function in diverse biological processes. Numerous non-cell-autonomous proteins (NCAP) and small RNAs have been identified that have crucial roles in cell fate determination and organ patterning during development. Both the density and aperture size of PD are developmentally regulated, allowing formation of spatial symplastic domains for establishment of tissue-specific developmental programs. The PD size exclusion limit (SEL) is controlled by reversible deposition of callose, as well as by some PD-associated proteins. Although a large number of PD-associated proteins have been identified, many of their functions remain unknown. Despite the fact that PD are primarily membranous structures, surprisingly very little is known about their lipid composition. Thus, future studies in PD biology will provide deeper insights into the high-resolution structure and tightly regulated functions of PD and the evolution of PD-mediated cell-to-cell communication in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cilia ML, Jackson D (2004) Plasmodesmata form and function. Curr Opin Cell Biol 16:500–506

    PubMed  CAS  Google Scholar 

  2. Lucas WJ, Lee JY (2004) Plasmodesmata as a supracellular control network in plants. Nat Rev Mol Cell Biol 5:712–726

    PubMed  CAS  Google Scholar 

  3. Lucas WJ, Ham BK, Kim JY (2009) Plasmodesmata - bridging the gap between neighboring plant cells. Trends Cell Biol 19:495–503

    PubMed  CAS  Google Scholar 

  4. Guenoune-Gelbart D, Elbaum M, Sagi G et al (2008) Tobacco mosaic virus (TMV) replicase and movement protein function synergistically in facilitating TMV spread by lateral diffusion in the plasmodesmal desmotubule of Nicotiana benthamiana. Mol Plant Microbe Interact 21:335–345

    PubMed  CAS  Google Scholar 

  5. Barton DA, Cole L, Collings DA et al (2011) Cell-to-cell transport via the lumen of the endoplasmic reticulum. Plant J 66:806–817

    PubMed  CAS  Google Scholar 

  6. Bayer EM, Bottrill AR, Walshaw J et al (2006) Arabidopsis cell wall proteome defined using multidimensional protein identification technology. Proteomics 6:301–311

    PubMed  CAS  Google Scholar 

  7. Levy A, Erlanger M, Rosenthal M et al (2007) A plasmodesmata-associated beta-1,3-glucanase in Arabidopsis. Plant J 49:669–682

    PubMed  CAS  Google Scholar 

  8. Thomas CL, Bayer EM, Ritzenthaler C et al (2008) Specific targeting of a plasmodesmal protein affecting cell-to-cell communication. PLoS Biol 6:e7

    PubMed  PubMed Central  Google Scholar 

  9. Simpson C, Thomas C, Findlay K et al (2009) An Arabidopsis GPI-anchor plasmodesmal neck protein with callose binding activity and potential to regulate cell-to-cell trafficking. Plant Cell 21:581–594

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Fernandez-Calvino L, Faulkner C, Walshaw J et al (2011) Arabidopsis plasmodesmal proteome. PLoS One 6:e18880

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Ham BK, Li G, Kang BH et al (2012) Overexpression of Arabidopsis plasmodesmata germin-like proteins disrupts root growth and development. Plant Cell 24:3630–3648

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Salmon MS, Bayer EM (2013) Dissecting plasmodesmata molecular composition by mass spectrometry-based proteomics. Front Plant Sci 3:307

    PubMed  PubMed Central  Google Scholar 

  13. Zalepa-King L, Citovsky V (2013) A plasmodesmal glycosyltransferase-like protein. PLoS One 8:e58025

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Raffaele S, Bayer E, Lafarge D et al (2009) Remorin, a solanaceae protein resident in membrane rafts and plasmodesmata, impairs Potato virus X movement. Plant Cell 21:1541–1555

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Raffaele S, Bayer E, Mongrand S (2009) Upregulation of the plant protein remorin correlates with dehiscence and cell maturation: a link with the maturation of plasmodesmata? Plant Signal Behav 4:915–919

    PubMed  CAS  PubMed Central  Google Scholar 

  16. Mongrand S, Stanislas T, Bayer EM et al (2010) Membrane rafts in plant cells. Trends Plant Sci 15:656–663

    PubMed  CAS  Google Scholar 

  17. Keinath NF, Kierszniowska S, Lorek J et al (2010) PAMP (pathogen-associated molecular pattern)-induced changes in plasma membrane compartmentalization reveal novel components of plant immunity. J Biol Chem 285:39140–39149

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Simon-Plas F, Perraki A, Bayer E et al (2011) An update on plant membrane rafts. Curr Opin Plant Biol 14:642–649

    PubMed  CAS  Google Scholar 

  19. Tilsner J, Amari K, Torrance L (2011) Plasmodesmata viewed as specialised membrane adhesion sites. Protoplasma 248:39–60

    PubMed  CAS  Google Scholar 

  20. White RG, Barton DA (2011) The cytoskeleton in plasmodesmata: a role in intercellular transport? J Exp Bot 62:5249–5266

    PubMed  CAS  Google Scholar 

  21. Burch-Smith TM, Stonebloom S, Xu M et al (2011) Plasmodesmata during development: re-examination of the importance of primary, secondary, and branched plasmodesmata structure versus function. Protoplasma 248:61–74

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Crawford KM, Zambryski PC (2000) Subcellular localization determines the availability of non-targeted proteins to plasmodesmatal transport. Curr Biol 10:1032–1040

    PubMed  CAS  Google Scholar 

  23. Kim I, Cho E, Crawford K et al (2005) Cell-to-cell movement of GFP during embryogenesis and early seedling development in Arabidopsis. Proc Natl Acad Sci U S A 102:2227–2231

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Rim Y, Huang L, Chu H et al (2011) Analysis of Arabidopsis transcription factor families revealed extensive capacity for cell-to-cell movement as well as discrete trafficking patterns. Mol Cells 32:519–526

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Terry Terry BR, Robards AW (1987) Hydrodynamic radius alone governs the mobility of molecules through plasmodesmata. Planta 171:145–157

    Google Scholar 

  26. Dashevskaya S, Kopito RB, Friedman R et al (2008) Diffusion of anionic and neutral GFP derivatives through plasmodesmata in epidermal cells of Nicotiana benthamiana. Protoplasma 234:13–23

    PubMed  CAS  Google Scholar 

  27. Kim I, Kobayashi K, Cho E et al (2005) Subdomains for transport via plasmodesmata corresponding to the apical-basal axis are established during Arabidopsis embryogenesis. Proc Natl Acad Sci U S A 102:11945–11950

    PubMed  CAS  PubMed Central  Google Scholar 

  28. Kim I, Zambryski PC (2005) Cell-to-cell communication via plasmodesmata during Arabidopsis embryogenesis. Curr Opin Plant Biol 8:593–599

    PubMed  CAS  Google Scholar 

  29. Zhu T, Lucas WJ, Rost TL (1998) Directional cell-to-cell communication in the Arabidopsis root apical meristem I. An ultrastructural and functional analysis. Protoplasma 203:35–47

    Google Scholar 

  30. Zhu T, O’Quinn RL, Lucas WJ et al (1998) Directional cell-to-cell communication in the Arabidopsis root apical meristem II. Dynamics of plasmodesmatal formation. Protoplasma 204:84–93

    Google Scholar 

  31. Stadler R, Lauterbach C, Sauer N (2005) Cell-to-cell movement of green fluorescent protein reveals post-phloem transport in the outer integument and identifies symplastic domains in Arabidopsis seeds and embryos. Plant Physiol 139:701–712

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Reddy GV, Heisler MG, Ehrhardt DW et al (2004) Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana. Development 131:4225–4237

    PubMed  CAS  Google Scholar 

  33. Williams L, Fletcher JC (2005) Stem cell regulation in the Arabidopsis shoot apical meristem. Curr Opin Plant Biol 8:582–586

    PubMed  CAS  Google Scholar 

  34. Marcotrigiano M (2001) Genetic mosaics and the analysis of leaf development. Int J Plant Sci 162:513–525

    CAS  Google Scholar 

  35. Jackson D, Veit B, Hake S (1994) Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120:405–413

    CAS  Google Scholar 

  36. Lucas WJ, Bouché-Pillon S, Jackson DP et al (1995) Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science 270:1980–1983

    PubMed  CAS  Google Scholar 

  37. Kim JY, Yuan Z, Jackson D (2003) Developmental regulation and significance of KNOX protein trafficking in Arabidopsis. Development 130:4351–4362

    PubMed  CAS  Google Scholar 

  38. Laux T, Mayer KF, Berger J et al (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87–96

    PubMed  CAS  Google Scholar 

  39. Mayer KF, Schoof H, Haecker A et al (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–815

    PubMed  CAS  Google Scholar 

  40. Tucker MR, Laux T (2007) Connecting the paths in plant stem cell regulation. Trends Cell Biol 17:403–410

    PubMed  CAS  Google Scholar 

  41. Schoof H, Lenhard M, Haecker A et al (2000) The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644

    PubMed  CAS  Google Scholar 

  42. Yadav RK, Perales M, Gruel J et al (2011) WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes Dev 25:2025–2030

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Ishida T, Kurata T, Okada K et al (2008) A genetic regulatory network in the development of trichomes and root hairs. Annu Rev Plant Biol 59:365–386

    PubMed  CAS  Google Scholar 

  44. Schiefelbein J, Kwak SH, Wieckowski Y et al (2009) The gene regulatory network for root epidermal cell-type pattern formation in Arabidopsis. J Exp Bot 60:1515–1521

    PubMed  CAS  Google Scholar 

  45. Pesch M, Hülskamp M (2009) One, two, three…models for trichome patterning in Arabidopsis? Curr Opin Plant Biol 12:587–592

    PubMed  CAS  Google Scholar 

  46. Balkunde R, Pesch M, Hülskamp M (2010) Trichome patterning in Arabidopsis thaliana: from genetic to molecular models. Curr Top Dev Biol 91:299–321

    PubMed  CAS  Google Scholar 

  47. Bouyer D, Geier F, Kragler F et al (2008) Two-dimensional patterning by a trapping/depletion mechanism: the role of TTG1 and GL3 in Arabidopsis trichome formation. PLoS Biol 6:e141

    PubMed  PubMed Central  Google Scholar 

  48. Balkunde R, Bouyer D, Hülskamp M (2011) Nuclear trapping by GL3 controls intercellular transport and redistribution of TTG1 protein in Arabidopsis. Development 138:5039–5048

    PubMed  CAS  Google Scholar 

  49. Wester K, Digiuni S, Geier F et al (2009) Functional diversity of R3 single-repeat genes in trichome development. Development 136:1487–1496

    PubMed  CAS  Google Scholar 

  50. Wada T, Tachibana T (1997) Epidermal cell differentiation in Arabidopsis determined by a Myb homolog, CPC. Science 277:1113–1116

    PubMed  CAS  Google Scholar 

  51. Wada T, Kurata T, Tominaga R et al (2002) Role of a positive regulator of root hair development, CAPRICE, in Arabidopsis root epidermal cell differentiation. Development 129:5409–5419

    PubMed  CAS  Google Scholar 

  52. Schellmann S, Schnittger A, Kirik V et al (2002) TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis. EMBO J 21:5036–5046

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Kurata T, Ishida T, Kawabata-Awai C et al (2005) Cell-to-cell movement of the CAPRICE protein in Arabidopsis root epidermal cell differentiation. Development 132:5387–5398

    PubMed  CAS  Google Scholar 

  54. Bernhardt C, Lee MM, Gonzalez A et al (2003) The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root. Development 130:6431–6439

    PubMed  CAS  Google Scholar 

  55. Bernhardt C, Zhao M, Gonzalez A et al (2005) The bHLH genes GL3 and EGL3 participate in an intercellular regulatory circuit that controls cell patterning in the Arabidopsis root epidermis. Development 132:291–298

    PubMed  CAS  Google Scholar 

  56. Putterill J, Laurie R, Macknight R (2004) It’s time to flower: the genetic control of flowering time. Bioessays 26:363–373

    PubMed  CAS  Google Scholar 

  57. Imaizumi T, Kay S (2006) Photoperiodic control of flowering: not only by coincidence. Trends Plant Sci 11:550–558

    PubMed  CAS  Google Scholar 

  58. Corbesier L, Vincent C, Jang S et al (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033

    PubMed  CAS  Google Scholar 

  59. Jaeger K, Wigge P (2007) FT protein acts as a long-range signal in Arabidopsis. Curr Biol 17:1050–1054

    PubMed  CAS  Google Scholar 

  60. Mathieu J, Warthmann N, Kuttner F et al (2007) Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr Biol 17:1055–1060

    PubMed  CAS  Google Scholar 

  61. Abe M, Kobayashi Y, Yamamoto S et al (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056

    PubMed  CAS  Google Scholar 

  62. Wigge P, Kim M, Jaeger K et al (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059

    PubMed  CAS  Google Scholar 

  63. Gisel A, Barella S, Hempel FD et al (1999) Temporal and spatial regulation of symplastic trafficking during development in Arabidopsis thaliana apices. Development 126:1879–1889

    PubMed  CAS  Google Scholar 

  64. Rinne PL, van der Schoot C (1998) Symplasmic fields in the tunica of the shoot apical meristem coordinate morphogenetic events. Development 125:1477–1485

    PubMed  CAS  Google Scholar 

  65. Rinne PL, Welling A, Vahala J et al (2011) Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1,3-beta glucanases to reopen signal conduits and release dormancy in Populus. Plant Cell 23:130–146

    PubMed  CAS  PubMed Central  Google Scholar 

  66. Sessions A, Yanofsky MF, Weigel D (2000) Cell-cell signaling and movement by the floral transcription factors LEAFY and APETALA1. Science 289:779–782

    PubMed  CAS  Google Scholar 

  67. Wu X, Dinneny JR, Crawford KM et al (2003) Modes of intercellular transcription factor movement in the Arabidopsis apex. Development 130:3735–3745

    PubMed  CAS  Google Scholar 

  68. Tröbner W, Ramirez L, Motte P et al (1992) GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J 11:4693–4704

    PubMed  PubMed Central  Google Scholar 

  69. Perbal MC, Haughn G, Saedler H et al (1996) Non-cell-autonomous function of the Antirrhinum floral homeotic proteins DEFICIENS and GLOBOSA is exerted by their polar cell-to-cell trafficking. Development 122:3433–3441

    PubMed  CAS  Google Scholar 

  70. Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in Arabidopsis. Plant Cell 1:37–52

    PubMed  CAS  PubMed Central  Google Scholar 

  71. Lenhard M, Bohnert A, Jürgens G et al (2001) Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 105:805–814

    PubMed  CAS  Google Scholar 

  72. Urbanus SL, Martinelli AP, Dinh QD et al (2010) Intercellular transport of epidermis-expressed MADS domain transcription factors and their effect on plant morphology and floral transition. Plant J 63:60–72

    PubMed  CAS  Google Scholar 

  73. Dolan L, Janmaat K, Willemsen V et al (1993) Cellular organisation of the Arabidopsis thaliana root. Development 119:71–84

    PubMed  CAS  Google Scholar 

  74. Weijers D, Schlereth A, Ehrismann JS et al (2006) Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis. Dev Cell 10:265–270

    PubMed  CAS  Google Scholar 

  75. Schlereth A, Möller B, Liu W et al (2010) MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 464:913–916

    PubMed  CAS  Google Scholar 

  76. Helariutta Y, Fukaki H, Wysocka-Diller J et al (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101:555–567

    PubMed  CAS  Google Scholar 

  77. Nakajima K, Sena G, Nawy T et al (2001) Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413:307–311

    PubMed  CAS  Google Scholar 

  78. Sabatini S, Heidstra R, Wildwater M et al (2003) SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev 17:354–358

    PubMed  CAS  PubMed Central  Google Scholar 

  79. Sarkar AK, Luijten M, Miyashima S et al (2007) Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446:811–814

    PubMed  CAS  Google Scholar 

  80. Stahl Y, Wink RH, Ingram GC et al (2009) A signaling module controlling the stem cell niche in Arabidopsis root meristems. Curr Biol 19:909–914

    PubMed  CAS  Google Scholar 

  81. Stahl Y, Grabowski S, Bleckmann A et al (2013) Moderation of Arabidopsis root stemness by CLAVATA1 and ARABIDOPSIS CRINKLY4 receptor kinase Complexes. Curr Biol 23:362–371

    PubMed  CAS  Google Scholar 

  82. Sozzani R, Cui H, Moreno-Risueno MA et al (2010) Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature 466:128–132

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Carlsbecker A, Lee JY, Roberts CJ et al (2010) Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465:316–321

    PubMed  CAS  PubMed Central  Google Scholar 

  84. Miyashima S, Koi S, Hashimoto T et al (2011) Non-cell-autonomous microRNA165 acts in a dose-dependent manner to regulate multiple differentiation status in the Arabidopsis root. Development 138:2303–2313

    PubMed  CAS  Google Scholar 

  85. Samuels AL, Giddings TH Jr, Staehelin LA (1995) Cytokinesis in tobacco BY-2 and root tip cells: a new model of cell plate formation in higher plants. J Cell Biol 130:1345–1357

    PubMed  CAS  Google Scholar 

  86. Parre E, Geitmann A (2005) More than a leak sealant. The mechanical properties of callose in pollen tubes. Plant Physiol 137:274–286

    PubMed  CAS  PubMed Central  Google Scholar 

  87. Chen XY, Kim JY (2009) Callose synthesis in higher plants. Plant Signal Behav 4:489–492

    PubMed  CAS  PubMed Central  Google Scholar 

  88. Zavaliev R, Ueki S, Epel BL et al (2011) Biology of callose (beta-1,3-glucan) turnover at plasmodesmata. Protoplasma 248:117–130

    PubMed  CAS  Google Scholar 

  89. Bucher GL, Tarina C, Heinlein M et al (2001) Local expression of enzymatically active class I beta-1, 3-glucanase enhances symptoms of TMV infection in tobacco. Plant J 28:361–369

    PubMed  CAS  Google Scholar 

  90. Rinne PL, Kaikuranta PM, van der Schoot C (2001) The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy. Plant J 26:249–264

    PubMed  CAS  Google Scholar 

  91. Levy A, Guenoune-Gelbart D, Epel BL (2007) beta-1,3-Glucanases: plasmodesmal gate keepers for intercellular communication. Plant Signal Behav 2:404–407

    PubMed  PubMed Central  Google Scholar 

  92. Benitez-Alfonso Y, Faulkner C, Pendle A et al (2013) Symplastic intercellular connectivity regulates lateral root patterning. Dev Cell 26:136–147

    PubMed  CAS  Google Scholar 

  93. Verma DP, Hong Z (2001) Plant callose synthase complexes. Plant Mol Biol 47:693–701

    PubMed  CAS  Google Scholar 

  94. Chen XY, Liu L, Lee E et al (2009) The Arabidopsis callose synthase gene GSL8 is required for cytokinesis and cell patterning. Plant Physiol 150:105–113

    PubMed  CAS  PubMed Central  Google Scholar 

  95. Guseman JM, Lee JS, Bogenschutz NL et al (2010) Dysregulation of cell-to-cell connectivity and stomatal patterning by loss-of-function mutation in Arabidopsis chorus (glucan synthase-like 8). Development 137:1731–1741

    PubMed  CAS  Google Scholar 

  96. Barratt DH, Kölling K, Graf A et al (2011) Callose synthase GSL7 is necessary for normal phloem transport and inflorescence growth in Arabidopsis. Plant Physiol 155:328–341

    PubMed  CAS  PubMed Central  Google Scholar 

  97. Xie B, Wang X, Zhu M et al (2011) CalS7 encodes a callose synthase responsible for callose deposition in the phloem. Plant J 65:1–14

    PubMed  CAS  Google Scholar 

  98. Vatén A, Dettmer J, Wu S et al (2011) Callose biosynthesis regulates symplastic trafficking during root development. Dev Cell 21:1144–1155

    PubMed  Google Scholar 

  99. Slewinski TL, Baker RF, Stubert A et al (2012) Tie-dyed2 encodes a callose synthase that functions in vein development and affects symplastic trafficking within the phloem of maize leaves. Plant Physiol 160:1540–1550

    PubMed  CAS  PubMed Central  Google Scholar 

  100. Sagi G, Katz A, Guenoune-Gelbart D et al (2005) Class 1 reversibly glycosylated polypeptides are plasmodesmal-associated proteins delivered to plasmodesmata via the Golgi apparatus. Plant Cell 17:1788–1800

    PubMed  CAS  PubMed Central  Google Scholar 

  101. Zavaliev R, Sagi G, Gera A et al (2010) The constitutive expression of Arabidopsis plasmodesmal-associated class 1 reversibly glycosylated polypeptide impairs plant development and virus spread. J Exp Bot 61:131–142

    PubMed  CAS  PubMed Central  Google Scholar 

  102. Amari K, Boutant E, Hofmann C et al (2010) A family of plasmodesmal proteins with receptor-like properties for plant viral movement proteins. PLoS Pathog 6:e1001119

    PubMed  PubMed Central  Google Scholar 

  103. Lee JY, Wang X, Cui W et al (2011) A Plasmodesmata-Localized Protein Mediates Crosstalk between Cell-to-Cell Communication and Innate Immunity in Arabidopsis. Plant Cell 23:3353–3373

    PubMed  CAS  PubMed Central  Google Scholar 

  104. Benitez-Alfonso Y, Cilia M, San Roman A et al (2009) Control of Arabidopsis meristem development by thioredoxin-dependent regulation of intercellular transport. Proc Natl Acad Sci U S A 106:3615–3620

    PubMed  CAS  PubMed Central  Google Scholar 

  105. Stonebloom S, Burch-Smith T, Kim I et al (2009) Loss of the plant DEAD-box protein ISE1 leads to defective mitochondria and increased cell-to-cell transport via plasmodesmata. Proc Natl Acad Sci U S A 106:17229–17234

    PubMed  CAS  PubMed Central  Google Scholar 

  106. Kobayashi K, Otegui MS, Krishnakumar S et al (2007) INCREASED SIZE EXCLUSION LIMIT 2 encodes a putative DEVH box RNA helicase involved in plasmodesmata function during Arabidopsis embryogenesis. Plant Cell 19:1885–1897

    PubMed  CAS  PubMed Central  Google Scholar 

  107. Stonebloom S, Brunkard JO, Cheung AC et al (2012) Redox states of plastids and mitochondria differentially regulate intercellular transport via plasmodesmata. Plant Physiol 158:190–199

    PubMed  CAS  PubMed Central  Google Scholar 

  108. Kong D, Karve R, Willet A et al (2012) Regulation of plasmodesmatal permeability and stomatal patterning by the glycosyltransferase-like protein KOBITO1. Plant Physiol 159:156–168

    PubMed  CAS  PubMed Central  Google Scholar 

  109. Pagant S, Bichet A, Sugimoto K et al (2002) KOBITO1 encodes a novel plasma membrane protein necessary for normal synthesis of cellulose during cell expansion in Arabidopsis. Plant Cell 14:2001–2013

    PubMed  CAS  PubMed Central  Google Scholar 

  110. Brocard-Gifford I, Lynch TJ, Garcia ME et al (2004) The Arabidopsis thaliana ABSCISIC ACID-INSENSITIVE8 encodes a novel protein mediating abscisic acid and sugar responses essential for growth. Plant Cell 16:406–421

    PubMed  CAS  PubMed Central  Google Scholar 

  111. Faulkner C, Petutschnig E, Benitez-Alfonso Y et al (2013) LYM2-dependent chitin perception limits molecular flux via plasmodesmata. Proc Natl Acad Sci U S A 110:9166–9170

    PubMed  CAS  PubMed Central  Google Scholar 

  112. Xu M, Cho E, Burch-Smith TM et al (2012) Plasmodesmata formation and cell-to-cell transport are reduced in decreased size exclusion limit 1 during embryogenesis in Arabidopsis. Proc Natl Acad Sci U S A 109:5098–5103

    PubMed  CAS  PubMed Central  Google Scholar 

  113. Yamagishi K, Nagata N, Yee KM et al (2005) TANMEI/EMB2757 encodes a WD repeat protein required for embryo development in Arabidopsis. Plant Physiol 139:163–173

    PubMed  CAS  PubMed Central  Google Scholar 

  114. Benitez-Alfonso Y, Faulkner C, Ritzenthaler C et al (2010) Plasmodesmata: gateways to local and systemic virus infection. Mol. Plant Microbe Interact 23:1403–1412

    CAS  Google Scholar 

  115. Crawford KM, Zambryski PC (2001) Non-targeted and targeted protein movement through plasmodesmata in leaves in different developmental and physiological states. Plant Physiol 125:1802–1812

    PubMed  CAS  PubMed Central  Google Scholar 

  116. Kim JY, Rim Y, Wang J et al (2005) A novel cell-to-cell trafficking assay indicates that the KNOX homeodomain is necessary and sufficient for intercellular protein and mRNA trafficking. Genes Dev 19:788–793

    PubMed  CAS  PubMed Central  Google Scholar 

  117. Gallagher KL, Benfey PN (2009) Both the conserved GRAS domain and nuclear localization are required for SHORT-ROOT movement. Plant J 57:785–797

    PubMed  CAS  PubMed Central  Google Scholar 

  118. Koizumi K, Wu S, MacRae-Crerar A et al (2011) An essential protein that interacts with endosomes and promotes movement of the SHORT-ROOT transcription factor. Curr Biol 21:1559–1564

    PubMed  CAS  Google Scholar 

  119. Wu S, Gallagher KL (2013) Intact microtubules are required for the intercellular movement of the SHORT-ROOT transcription factor. Plant J 74:148–159

    PubMed  CAS  Google Scholar 

  120. Xu XM, Wang J, Xuan Z et al (2011) Chaperonins facilitate KNOTTED1 cell-to-cell trafficking and stem cell function. Science 333:1141–1144

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by Tekes funds, Academy of Finland, and ERC Grant (Y.H.). I.S. was also funded by Viikki Doctoral Program in Molecular Biosciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ykä Helariutta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sevilem, I., Yadav, S.R., Helariutta, Y. (2015). Plasmodesmata: Channels for Intercellular Signaling During Plant Growth and Development. In: Heinlein, M. (eds) Plasmodesmata. Methods in Molecular Biology, vol 1217. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1523-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1523-1_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1522-4

  • Online ISBN: 978-1-4939-1523-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics