Skip to main content

Calculation of Binding Free Energies

  • Protocol
  • First Online:
Book cover Molecular Modeling of Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1215))

Abstract

Molecular dynamics simulations enable access to free energy differences governing the driving force underlying all biological processes. In the current chapter we describe alchemical methods allowing the calculation of relative free energy differences. We concentrate on the binding free energies that can be obtained using non-equilibrium approaches based on the Crooks Fluctuation Theorem. Together with the theoretical background, the chapter covers practical aspects of hybrid topology generation, simulation setup, and free energy estimation. An important aspect of the validation of a simulation setup is illustrated by means of calculating free energy differences along a full thermodynamic cycle. We provide a number of examples, including protein–ligand and protein–protein binding as well as ligand solvation free energy calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Distance restraints on the P α , P γ and the Mg+2 will keep the atoms in their respective orientation in one of the two top clusters shown in Fig. 12b.

  2. 2.

    A shorter transition time of 200 ps also gave a result that was fairly close to zero, but longer times were used to reduce the error.

References

  1. Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys 23(2):187–199

    Article  Google Scholar 

  2. Kirkwood JG (1935) Statistical mechanics of fluid mixtures. J Chem Phys 3:300–313

    Article  CAS  Google Scholar 

  3. Ben-Naim A (1992) Statistical thermodynamics for chemists and biochemists. Plenum Press, New York

    Book  Google Scholar 

  4. Chipot C, Pohorille A (eds) (2007) Free energy calculations. Theory and applications in chemistry and biology. Springer series in chemical physics, vol 86

    Google Scholar 

  5. Christ CD, Mark AE, van Gunsteren WF (2010) Basic ingredients of free energy calculations: a review. J Comput Chem 31(8):1569–1582. ISSN 1096-987X. doi:10.1002/jcc.21450. http://dx.doi.org/10.1002/jcc.21450

    Google Scholar 

  6. Michael S, David M (2013) An introduction to best practices in free energy calculations. In: Biomolecular simulations: methods and protocols. Methods in molecular biology, vol 924. Humana Press, New York, pp 271–311

    Google Scholar 

  7. Zwanzig RW (1954) High-temperature equation of state by a perturbation method. I. Nonpolar gases. J Chem Phys 22:1420–1426

    CAS  Google Scholar 

  8. Pohorille A, Jarzynski C, Chipot C (2010) Good practices in free-energy calculations. J Phys Chem B 114(32):10235–10253

    Article  PubMed  CAS  Google Scholar 

  9. Landau LD (1938) Statistical physics. The Clarendon Press, Oxford

    Google Scholar 

  10. Lu N, Kofke DA (2001) Accuracy of free-energy perturbation calculations in molecular simulation. I. Modeling. J Chem Phys 114: 7303–7311

    CAS  Google Scholar 

  11. Lu N, Kofke DA (2001) Accuracy of free-energy perturbation calculations in molecular simulation. II. Heuristics. J Chem Phys 115: 6866–6875

    CAS  Google Scholar 

  12. Shirts MR, Pande VS (2005) Comparison of efficiency and bias of free energies computed by exponential averaging, the Bennett acceptance ratio, and thermodynamic integration. J Chem Phys 122(14):144107-1–144107-16

    Google Scholar 

  13. Bennett CH (1976) Efficient estimation of free energy differences from Monte Carlo data. J Comput Phys 22(2):245–268

    Article  Google Scholar 

  14. Shirts MR, Bair E, Hooker G, Pande VS (2003) Equilibrium free energies from nonequilibrium measurements using maximum-likelihood methods. Phys Rev Lett 91(14):140601

    Article  PubMed  Google Scholar 

  15. Mezei M (1992) Polynomial path for the calculation of liquid state free energies from computer simulations tested on liquid water. J Comput Chem 13(5):651–656

    Article  CAS  Google Scholar 

  16. Steinbrecher T, Mobley DL, Case DA (2007) Nonlinear scaling schemes for Lennard-Jones interactions in free energy calculations. J Chem Phys 127:214108

    Article  PubMed  Google Scholar 

  17. Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem 13(8):1011–1021

    Article  CAS  Google Scholar 

  18. Shirts MR, Chodera JD (2008) Statistically optimal analysis of samples from multiple equilibrium states. J Chem Phys 129:124105

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shenfeld DK, Xu H, Eastwood MP, Dror RO, Shaw DE (2009) Minimizing thermodynamic length to select intermediate states for free-energy calculations and replica-exchange simulations. Phys Rev E 80(4):046705

    Article  Google Scholar 

  20. Buelens FP, Grubmüller H (2012) Linear-scaling soft-core scheme for alchemical free energy calculations. J Comput Chem 33(1): 25–33

    Article  PubMed  CAS  Google Scholar 

  21. Mazor M, Pettitt BM (1991) Convergence of the chemical potential in aqueous simulations. Mol Simul 6(1–3):1–4

    Article  Google Scholar 

  22. Mitchell MJ, McCammon JA (1991) Free energy difference calculations by thermodynamic integration: difficulties in obtaining a precise value. J Comput Chem 12(2):271–275

    Article  CAS  Google Scholar 

  23. Straatsma TP, McCammon JA (1991) Multiconfiguration thermodynamic integration. J Chem Phys 95:1175

    Article  CAS  Google Scholar 

  24. Jorge M, Garrido NM, Queimada AJ, Economou IG, Macedo EA (2010) Effect of the integration method on the accuracy and computational efficiency of free energy calculations using thermodynamic integration. J Chem Theory Comput 6(4):1018–1027

    Article  CAS  Google Scholar 

  25. Bruckner S, Boresch S (2011) Efficiency of alchemical free energy simulations. II. Improvements for thermodynamic integration. J Comput Chem 32(7):1320–1333

    CAS  Google Scholar 

  26. Jarzynski C (1997) Nonequilibrium equality for free energy differences. Phys Rev Lett 78(14):2690–2693

    Article  CAS  Google Scholar 

  27. Cuendet MA (2006) The Jarzynski identity derived from general hamiltonian or non-hamiltonian dynamics reproducing NVT or NPT ensembles. J Chem Phys 125:144109

    Article  PubMed  Google Scholar 

  28. Hummer G (2001) Fast-growth thermodynamic integration: error and efficiency analysis. J Chem Phys 114:7330–7337

    Article  CAS  Google Scholar 

  29. Gore J, Ritort F, Bustamante C (2003) Bias and error in estimates of equilibrium free-energy differences from nonequilibrium measurements. Proc Natl Acad Sci USA 100(22): 12564–12569

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Crooks GE (1998) Nonequilibrium measurements of free energy differences for microscopically reversible Markovian systems. J Stat Phys 90(5–6):1481–1487

    Article  Google Scholar 

  31. Crooks GE (1999) Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys Rev E 60(3):2721–2726

    Article  CAS  Google Scholar 

  32. Chelli R, Marsili S, Barducci A, Procacci P (2007) Recovering the Crooks equation for dynamical systems in the isothermal-isobaric ensemble: a strategy based on the equations of motion. J Chem Phys 126:044502

    Article  PubMed  Google Scholar 

  33. Nanda H, Lu N, Woolf TB (2005) Using non-Gaussian density functional fits to improve relative free energy calculations. J Chem Phys 122(13):134110-1–134110-8

    Google Scholar 

  34. Maragakis P, Ritort F, Bustamante C, Karplus M, Crooks GE (2008) Bayesian estimates of free energies from nonequilibrium work data in the presence of instrument noise. J Chem Phys 129:024102

    Article  PubMed  PubMed Central  Google Scholar 

  35. Goette M, Grubmüller H (2009) Accuracy and convergence of free energy differences calculated from nonequilibrium switching processes. J Comput Chem 30(3):447–456

    Article  PubMed  CAS  Google Scholar 

  36. Bramwell ST, Christensen K, Fortin J-Y, Holdsworth PCW, Jensen HJ, Lise S, López JM, Nicodemi M, Pinton J-F, Sellitto M (2000) Universal fluctuations in correlated systems. Phys Rev Lett 84(17):3744–3747

    Article  PubMed  CAS  Google Scholar 

  37. Massey FJ Jr (1951) The Kolmogorov-Smirnov test for goodness of fit. J Am Stat Assoc 46(253):68–78

    Article  Google Scholar 

  38. Pearlman DA, Kollman PA (1991) The overlooked bond-stretching contribution in free energy perturbation calculations. J Chem Phys 94:4532–4545

    Article  CAS  Google Scholar 

  39. Pearlman DA (1994) A comparison of alternative approaches to free energy calculations. J Phys Chem 98(5):1487–1493

    Article  CAS  Google Scholar 

  40. Boresch S, Karplus M (1999) The role of bonded terms in free energy simulations. 2. Calculation of their influence on free energy differences of solvation. J Phys Chem A 103(1):119–136

    Article  CAS  Google Scholar 

  41. Boresch S, Karplus M (1999) The role of bonded terms in free energy simulations: 1. Theoretical analysis. J Phys Chem A 103(1): 103–118

    Article  CAS  Google Scholar 

  42. Bash PA, Singh UC, Langridge R, Kollman PA (1987) Free energy calculations by computer simulation. Science 236(4801):564–568

    Article  PubMed  CAS  Google Scholar 

  43. Beutler TC, Mark AE, van Schaik RC, Gerber PR, van Gunsteren WF (1994) Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations. Chem Phys Lett 222(6):529–539. ISSN 0009-2614

    Google Scholar 

  44. Zacharias M, Straatsma TP, McCammon JA (1994) Separation-shifted scaling, a new scaling method for Lennard-Jones interactions in thermodynamic integration. J Chem Phys 100: 9025–9031

    Article  CAS  Google Scholar 

  45. Gapsys V, Seeliger D, de Groot BL (2012) New soft-core potential function for molecular dynamics based alchemical free energy calculations. J Chem Theory Comput 8(7): 2373–2382

    Article  CAS  Google Scholar 

  46. Tosco P, Balle T, Shiri F (2011) Open 3DALIGN: an open-source software aimed at unsupervised ligand alignment. J Comput Aided Mol Des 25(8):777–783

    Article  PubMed  CAS  Google Scholar 

  47. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3): 435–447

    Article  CAS  Google Scholar 

  48. Seeliger D, De Groot BL (2010) Protein thermostability calculations using alchemical free energy simulations. Biophys J 98(10):2309–2316. ISSN 0006-3495

    Google Scholar 

  49. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminf 3(1):1–14

    Article  Google Scholar 

  50. Sadowski J, Gasteiger J, Klebe G (1994) Comparison of automatic three-dimensional model builders using 639 X-ray structures. J Chem Inf Comput Sci 34(4):1000–1008

    Article  CAS  Google Scholar 

  51. Singh UC, Kollman PA (1984) An approach to computing electrostatic charges for molecules. J Comput Chem 5(2):129–145

    Article  CAS  Google Scholar 

  52. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97(40):10269–10280

    Article  CAS  Google Scholar 

  53. Jakalian A, Bush BL, Jack DB, Bayly CI (2000) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J Comput Chem 21(2):132–146

    Article  CAS  Google Scholar 

  54. Mobley DL, Dumont É, Chodera JD, Dill KA (2007) Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent. J Phys Chem B 111(9):2242–2254

    Article  PubMed  CAS  Google Scholar 

  55. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25(2):247–260

    Article  PubMed  Google Scholar 

  56. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174

    Article  PubMed  CAS  Google Scholar 

  57. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, MacKerell AD Jr (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690

    PubMed  CAS  PubMed Central  Google Scholar 

  58. Vanommeslaeghe K, MacKerell AD Jr (2012) Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing. J Chem Inf Model 52(12): 3144–3154

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Vanommeslaeghe K, Raman EP, MacKerell AD Jr (2012) Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J Chem Inf Model 52(12):3155–3168

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Malde AK, Zuo L, Breeze M, Stroet M, Poger D, Nair PC, Oostenbrink C, Mark AE (2011) An automated force field topology builder (ATB) and repository: version 1.0. J Chem Theory Comput 7(12):4026–4037

    Article  CAS  Google Scholar 

  61. Ribeiro AAST, Horta BAC, de Alencastro RB (2008) MKTOP: a program for automatic construction of molecular topologies. J Braz Chem Soc 19(7):1433–1435

    Article  CAS  Google Scholar 

  62. Rocklin GJ, Mobley DL, Dill KA, Hünenberger PH (2013) Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects. J Chem Phys 139(18):184103.

    Google Scholar 

  63. Talhout R, Villa A, Mark AE, Engberts JBFN (2003) Understanding binding affinity: a combined isothermal titration calorimetry/molecular dynamics study of the binding of a series of hydrophobically modified benzamidinium chloride inhibitors to trypsin. J Am Chem Soc 125(35):10570–10579

    Article  PubMed  CAS  Google Scholar 

  64. Marquart M, Walter J, Deisenhofer J, Bode W, Huber R (1983) The geometry of the reactive site and of the peptide groups in trypsin, trypsinogen and its complexes with inhibitors. Acta Crystallogr Sect B Struct Sci 39(4):480–490

    Article  Google Scholar 

  65. Lu W, Apostol I, Qasim MA, Warne N, Wynn R, Zhang WL, Anderson S, Chiang YW, Ogin E, Rothberg I, Ryan K, Laskowski M (1997) Binding of amino acid side-chains to S1 cavities of serine proteinases. J Mol Biol 266(2): 441–461

    Article  PubMed  CAS  Google Scholar 

  66. Benedix A, Becker CM, de Groot BL, Caflisch A, Böckmann RA (2009) Predicting free energy changes using structural ensembles. Nat Methods 6(1):3–4

    Article  PubMed  CAS  Google Scholar 

  67. Fujinaga M, Sielecki AR, Read RJ, Ardelt W, Laskowski M, James MNG (1987) Crystal and molecular structures of the complex of α-chymotrypsin with its inhibitor turkey ovomucoid third domain at 1.8 Å resolution. J Mol Biol 195(2):397–418

    Article  PubMed  CAS  Google Scholar 

  68. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins Struct Funct Bioinform 65(3): 712–725

    Article  CAS  Google Scholar 

  69. Mobley DL, Chodera JD, Dill KA (2006) On the use of orientational restraints and symmetry corrections in alchemical free energy calculations. J Chem Phys 125(8):084902. doi: 10.1063/1.2221683. http://link.aip.org/link/?JCP/125/084902/1

    Google Scholar 

  70. Shirts MR, Pitera JW, Swope WC, Pande VS (2003) Extremely precise free energy calculations of amino acid side chain analogs: comparison of common molecular mechanics force fields for proteins. J Chem Phys 119(11): 5740–5761

    Article  CAS  Google Scholar 

  71. Shirts MR, Mobley DL, Chodera JD, Pande VS (2007) Accurate and efficient corrections for missing dispersion interactions in molecular simulations. J Phys Chem B 111(45): 13052–13063

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert L. de Groot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gapsys, V., Michielssens, S., Peters, J.H., de Groot, B.L., Leonov, H. (2015). Calculation of Binding Free Energies. In: Kukol, A. (eds) Molecular Modeling of Proteins. Methods in Molecular Biology, vol 1215. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1465-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1465-4_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1464-7

  • Online ISBN: 978-1-4939-1465-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics