Skip to main content

Molecular Dynamics Simulations of Membrane Proteins

  • Protocol
  • First Online:
Molecular Modeling of Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1215))

Abstract

Membrane protein structures are underrepresented in the Protein Data Bank (PDB) due to difficulties associated with expression and crystallization. As such, it is one area where computational studies, particularly Molecular Dynamics (MD) simulations, can provide useful additional information. Recently, there has been substantial progress in the simulation of lipid bilayers and membrane proteins embedded within them. Initial efforts at simulating membrane proteins embedded within a lipid bilayer were relatively slow and interactive processes, but recent advances now mean that the setup and running of membrane protein simulations is somewhat more straightforward, though not without its problems. In this chapter, we outline practical methods for setting up and running MD simulations of a membrane protein embedded within a lipid bilayer and discuss methodologies that are likely to contribute future improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wallin E, von Heijne G (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archean, and eukaryotic organisms. Protein Sci 7:1029–1038

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Terstappen GC, Reggiani A (2001) In silico research in drug discovery. Trends Pharmacol Sci 22:23–26

    PubMed  CAS  Google Scholar 

  3. Lemieux MJ, Huang Y, Wang DN (2004) The structural basis of substrate translocation by the Escherichia coli glycerol-3-phosphate transporter: a member of the major facilitator superfamily. Curr Opin Struct Biol 14: 405–412

    PubMed  CAS  Google Scholar 

  4. Guan L, Kaback HR (2006) Lessons from lactose permease. Annu Rev Biophys Biomol Struct 35:67–91

    PubMed  CAS  PubMed Central  Google Scholar 

  5. Gether U, Andersen PH, Larsson OM, Schousboe A (2006) Neurotransmitter transporters: molecular function of important drug targets. Trends Pharmacol Sci 27:375–383

    PubMed  CAS  Google Scholar 

  6. Ash WL, Zlomislic MR, Oloo EO, Tieleman DP (2004) Computer simulations of membrane proteins. Biochem Biophys Acta 1666:158–189

    PubMed  CAS  Google Scholar 

  7. Sperotto MM, May S, Baumgaertner A (2006) Modelling of proteins in membranes. Chem Phys Lipids 141:2–29

    PubMed  CAS  Google Scholar 

  8. Beckstein O, Biggin PC, Bond P, Bright JN, Domene C, Grottesi A et al (2003) Ion channel gating: insights via molecular simulations. FEBS Lett 555:85–90

    PubMed  CAS  Google Scholar 

  9. Gumbart J, Wang Y, Aksimentiev A, Tajkhorshid E, Schulten K (2005) Molecular dynamics simulations of proteins in lipid bilayers. Curr Opin Struct Biol 15:423–431

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Roux B (2005) Ion conduction and selectivity in K(+) channels. Annu Rev Biophys Biomol Struct 34:153–171

    PubMed  CAS  Google Scholar 

  11. Bond PJ, Sansom MSP (2004) The simulation approach to bacterial outer membrane proteins. Mol Memb Biol 21:151–161

    CAS  Google Scholar 

  12. Beckstein O, Biggin PC, Sansom MSP (2001) A hydrophobic gating mechanism for nanopores. J Phys Chem B 105:12902–12905

    CAS  Google Scholar 

  13. Beckstein O, Sansom MSP (2006) A hydrophobic gate in an ion channel: the closed state of the nicotinic acetylcholine receptor. Phys Biol 3:147–159

    PubMed  CAS  Google Scholar 

  14. Arinaminpathy Y, Biggin PC, Shrivastava IH, Sansom MSP (2003) A prokaryotic glutamate receptor: homology modelling and molecular dynamics simulations of GluR0. FEBS Lett 553:321–327

    PubMed  CAS  Google Scholar 

  15. Ohkubo YZ, Pogorelov TV, Arcario MJ, Christensen GA, Tajkhorshid E (2012) Accelerating membrane insertion of peripheral proteins with a novel membrane mimetic model. Biophys J 102(9):2130–2139

    PubMed  CAS  PubMed Central  Google Scholar 

  16. Nielsen SO, Lopez CF, Ivanov I, Moore PB, Shelley JC, Klein ML (2004) Transmembrane peptide-induced lipid sorting and mechanism of Lα-to-inverted phase transition using coarse-grain molecular dynamics. Biophys J 87(4): 2107–2115

    PubMed  CAS  PubMed Central  Google Scholar 

  17. Anézo C, de Vries AH, Hoeltje H-D, Tieleman DP, Marrink SJ (2003) Methodological issues in lipid bilayer simulations. J Phys Chem B 107:9424–9433

    Google Scholar 

  18. Ulmschneider MB, Sansom MSP, Di Nola A (2005) Properties of integral membrane protein structures: derivation of an implicit membrane potential. Proteins 59:252–265

    PubMed  CAS  Google Scholar 

  19. Basyn F, Charloteaux B, Thomas A, Brasseur R (2001) Prediction of membrane protein orientation in lipid bilayers: a theoretical approach. J Mol Graph Model 20:235–244

    PubMed  CAS  Google Scholar 

  20. Tusnady GE, Dosztanyi Z, Simon I (2005) PDB_TM: selection and membrane localization of transmembrane proteins in the protein data bank. Nucleic Acids Res 33:D275–D278

    PubMed  CAS  PubMed Central  Google Scholar 

  21. Lomize MA, Lomize AL, Pogozheva ID, Mosberg HI (2006) OPM: orientations of protetins in membranes database. Bioinformatics 22:623–625

    PubMed  CAS  Google Scholar 

  22. DeLano WL (2004) The PyMOL molecular graphics system. DeLano Scientific LLC, San Carlos, CA

    Google Scholar 

  23. Vriend G (1990) A molecular modelling and drug design program. J Mol Graph 8:52–56

    PubMed  CAS  Google Scholar 

  24. Fiser A, Sali A (2003) Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461–491

    PubMed  CAS  Google Scholar 

  25. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen M-Y, et al. (2006) Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics, Chapter 5:Unit 5.6

    Google Scholar 

  26. Feller SE, MacKerell AD (2000) An improved empirical potential energy function for molecular simulations of phospholipids. J Phys Chem B 104(31):7510–7515

    CAS  Google Scholar 

  27. Klauda JB, Brooks BR, MacKerell AD Jr, Venable RM, Pastor RW (2005) An ab initio study on the torsional surface of alkanes and its effect on molecular simulations of alkanes and a DPPC bilayer. J Phys Chem B 109(11): 5300–5311

    PubMed  CAS  Google Scholar 

  28. Chandrasekhar I, Kastenholz M, Lins RD, Oostenbrink C, Schuler LD, Tieleman DP et al (2003) A consistent potential energy parameter set for lipids: dipalmitoylphosphatidylcholine as a benchmark of the GROMOS96 45A3 force field. Eur Biophys J 32(1):67–77

    PubMed  CAS  Google Scholar 

  29. Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C et al (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114(23): 7830–7843

    PubMed  CAS  PubMed Central  Google Scholar 

  30. Schuler LD, Daura X, van Gunsteren WF (2001) An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J Comput Chem 22(11):1205–1218

    CAS  Google Scholar 

  31. Berger O, Edholm O, Jahnig F (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidycholine at full hydration, constant pressure and constant temperature. Biophys J 72:2002–2013

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Jojart B, Martinek TA (2007) Performance of the general amber force field in modeling aqueous POPC membrane bilayers. J Comput Chem 28(12):2051–2058

    PubMed  CAS  Google Scholar 

  33. Poger D, Van Gunsteren WF, Mark AE (2010) A new force field for simulating phosphatidylcholine bilayers. J Comput Chem 31(6): 1117–1125

    PubMed  CAS  Google Scholar 

  34. Lyubartsev AP, Rabinovich AL (2011) Recent development in computer simulations of lipid bilayers. Soft Matter 7:25–39

    CAS  Google Scholar 

  35. Piggot TJ, Pineiro A, Khalid S (2012) Molecular dynamics simulations of phosphatidylcholine membranes: a comparative force field study. J Chem Theory Comput 8: 4593–4609

    CAS  Google Scholar 

  36. Li H, Robertson AD, Jensen JH (2005) Very fast empirical prediction and interpretation of protein pKa values. Proteins 61:704–721

    PubMed  CAS  Google Scholar 

  37. Olsson MHM, Sondergaard CR, Rostkowski M, Jensen JH (2011) PROPKA3: consistent treatment of internal and surface residues in empirical pK(a) predictions. J Chem Theory Comput 7(2):525–537

    CAS  Google Scholar 

  38. Gordon JC, Myers JB, Folta T, Shoja V, Heath LS, Onufriev A (2005) H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Res 33: W368–W371

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Anandakrishnan R, Aguilar B, Onufriev AV (2012) H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res 40(Web Server issue), W537–W541.

    Google Scholar 

  40. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38

    PubMed  CAS  Google Scholar 

  41. Rostkowski M, Olsson MH, Sondergaard CR, Jensen JH (2011) Graphical analysis of pH-dependent properties of proteins predicted using PROPKA. BMC Struct Biol 11:6

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Luzhkov VB, Åqvist J (2000) A computational study of ion binding and protonation states in the KcsA potassium channel. Biochim Biophys Acta 1481:360–370

    PubMed  CAS  Google Scholar 

  43. Ranatunga KM, Shrivastava IH, Smith GR, Sansom MSP (2001) Side-chain ionization states in a potassium channel. Biophys J 80: 1210–1219

    PubMed  CAS  PubMed Central  Google Scholar 

  44. Bernèche S, Roux B (2002) The ionizastion state and the conformation of Glu-71 in the KcsA K(+) channel. Biophys J 82:772–780

    PubMed  PubMed Central  Google Scholar 

  45. Cordero-Morales JF, Cuello LG, Zhao Y, Jogini V, Cortes DM, Roux B et al (2006) Molecular determinants of gating at the potassium channel selectivity filter. Nat Struct Biol 13:319–322

    CAS  Google Scholar 

  46. Arinaminpathy Y, Sansom MSP, Biggin PC (2002) Molecular dynamics simulations of the ligand-binding domain of the ionotropic glutamate receptor GluR2. Biophys J 82:676–683

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Arinaminpathy Y, Sansom MSP, Biggin PC (2006) Binding site flexibility: molecular simulation of partial and full agonists within a glutamate receptor. Mol Pharm 69:11–18

    CAS  Google Scholar 

  48. Kaye LS, Sansom MSP, Biggin PC (2006) Molecular dynamics simulations of an NMDA receptor. J Biol Chem 281:12736–12742

    PubMed  CAS  Google Scholar 

  49. Bennett WF, Tieleman DP (2013) Computer simulations of lipid membrane domains. Biochim Biophys Acta 1828(8):1765–1776

    PubMed  CAS  Google Scholar 

  50. Berkowitz ML (2009) Detailed molecular dynamics simulations of model biological membranes containing cholesterol. Biochim Biophys Acta Biomembr 1788(1):86–96

    CAS  Google Scholar 

  51. Feller SE (2000) Molecular dynamics simulations of lipid bilayers. Curr Opinion Coll Interface Sci 5:217–223

    CAS  Google Scholar 

  52. Mouritsen OG, Jorgensen K (1997) Small-scale lipid-membrane structure: simulation versus experiment. Curr Opin Struct Biol 7:518–527

    PubMed  CAS  Google Scholar 

  53. Scott HL (2002) Modeling the lipid component of membranes. Curr Opin Struct Biol 12:495–502

    PubMed  CAS  Google Scholar 

  54. Tieleman DP, Marrink SJ, Berendsen HJC (1997) A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim Biophys Acta 1331:235–270

    PubMed  CAS  Google Scholar 

  55. Belohorcova K, Davis JH, Woolf TB, Roux B (1997) Structure and dynamics of an amphiphilic peptide in a lipid bilayer: a molecular dynamics study. Biophys J 73:3039–3055

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Woolf TB, Roux B (1996) Structure, energetics, and dynamics of lipid-protein interactions—a molecular-dynamics study of the gramicidin-A channel in a DMPC bilayer. Proteins 24: 92–114

    PubMed  CAS  Google Scholar 

  57. Faraldo-Gómez JD, Smith GR, Sansom MSP (2002) Setting up and optimization of membrane protein simulations. Eur Biophys J 31: 217–227

    PubMed  Google Scholar 

  58. Staritzbichler R, Anselmi C, Forrest LR, Faraldo-Gomez JD (2011) GRIFFIN: A versatile methodology for optimization of protein-lipid interfaces for membrane protein simulations. J Chem Theory Comput 7:1167–1176

    PubMed  CAS  PubMed Central  Google Scholar 

  59. Jo S, Kim T, Im W (2007) Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS ONE 2(9):e880

    PubMed  PubMed Central  Google Scholar 

  60. Cheng X, Jo S, Lee HS, Klauda JB, Im W (2013) CHARMM-gui micelle builder for pure/mixed micelle and protein/micelle complex systems. J Chem Inf Model 53(8):2171–2180

    PubMed  CAS  Google Scholar 

  61. Wolf MG, Hoefling M, Aponte-Santamaría C, Grubmüller H, Groenhof G (2010) g_membed: Efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation. J Comput Chem 31(11):2169–2174

    PubMed  CAS  Google Scholar 

  62. Schmidt TH, Kandt C (2012) LAMBADA and InflateGRO2: Efficient membrane alignment and insertion of membrane proteins for molecular dynamics simulations. J Chem Inf Model 52(10):2657–2669

    PubMed  CAS  Google Scholar 

  63. Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: A package for molecular simulation and trajectory analysis. J Mol Model 7:306–317

    CAS  Google Scholar 

  64. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    PubMed  CAS  PubMed Central  Google Scholar 

  65. Lomize MA, Pogozheva ID, Joo H, Mosberg HI, Lomize AL (2012) OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res 40(Database issue):D370–D376

    PubMed  CAS  PubMed Central  Google Scholar 

  66. Christen M, Van Gunsteren WF (2006) Multigraining: An algorithm for simultaneous fine-grained and coarse-grained simulation of molecular systems. J Chem Phys 124: 154106.1–154106.7

    Google Scholar 

  67. Chang R, Ayton GS, Voth GA (2005) Multiscale coupling of mesoscopic and atomistic-level lipid bilayer simulations. J Chem Phys 122:244716

    PubMed  Google Scholar 

  68. Shi Q, Izvekov S, Voth GA (2006) Mixed atomistic and coarse-grained molecular dynamics: simulation of a membrane-bound ion channel. J Phys Chem B 110: 15045–15048

    PubMed  CAS  Google Scholar 

  69. Orsi M, Noro MG, Essex JW (2011) Dual-resolution molecular dynamics simulation of antimicrobials in biomembranes. J R Soc Interface 8(59):826–841

    PubMed  CAS  PubMed Central  Google Scholar 

  70. Rzepiela AJ, Louhivuori M, Peter C, Marrink SJ (2011) Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites. Phys Chem Chem Phys 13(22): 10437–10448

    PubMed  CAS  Google Scholar 

  71. Wassenaar TA, Ingolfsson HI, Priess M, Marrink SJ, Schafer LV (2013) Mixing MARTINI: electrostatic coupling in hybrid atomistic-coarse-grained biomolecular simulations. J Phys Chem B 117(13):3516–3530

    PubMed  CAS  Google Scholar 

  72. Goetz R, Lipowsky R (1998) Computer simulations of bilayer membranes: self-assembly and interfacial tension. J Chem Phys 108(17): 7397–7409

    CAS  Google Scholar 

  73. Murtola T, Falck E, Patra M, Karttunen M, Vattulainen I (2004) Coarse-grained model for phospholipid/cholesterol bilayer. J Chem Phys 121:9156–9165

    PubMed  CAS  Google Scholar 

  74. Shelley JC, Shelley MY, Reeder RC, Bandyopadhyay S, Moore PB, Klein ML (2001) Simulations of phospholipids using a coarse grain model. J Phys Chem B 105(40): 9785–9792

    CAS  Google Scholar 

  75. Smit B, Hilbers PAJ, Esselink K, Rupert LAM, van Os NM, Schlijper AG (1990) Computer simulations of a water/oil interface in the presence of micelles. Nature 348(6302):624–625

    CAS  Google Scholar 

  76. Stevens MJ, Hoh JH, Woolf TB (2003) Insights into the molecular mechanism of membrane fusion from simulation: evidence for the association of splayed tails. Phys Rev Lett 91(18):188102

    PubMed  Google Scholar 

  77. Whitehead L, Edge CM, Essex JW (2001) Molecular dynamics simulation of the hydrocarbon region of a biomembrane using a reduced representation model. J Comput Chem 22:1622–1633

    CAS  Google Scholar 

  78. Tepper HL, Voth GA (2005) A coarse-grained model for double-helix molecules in solution: spontaneous helix formation and equilibrium properties. J Chem Phys 122:124906

    PubMed  Google Scholar 

  79. Tozzini V (2005) Coarse-grained models for proteins. Curr Opin Struct Biol 15(2): 144–150

    PubMed  CAS  Google Scholar 

  80. Lopez CF, Nielsen SO, Moore PB, Klein ML (2004) Understanding nature’s design for a nanosyringe. Proc Natl Acad Sci U S A 101 (13):4431–4434

    PubMed  CAS  PubMed Central  Google Scholar 

  81. Venturoli M, Smit B, Sperotto MM (2005) Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins. Biophys J 88(3): 1778–1798

    PubMed  CAS  PubMed Central  Google Scholar 

  82. Marrink SJ, de Vries AH, Mark AE (2004) Coarse-grained model for semiquantitative lipid simulations. J Phys Chem 108:750–760

    CAS  Google Scholar 

  83. Bond PJ, Sansom MSP (2006) Insertion and assembly of membrane proteins via simulation. J Am Chem Soc 128:2697–2704

    PubMed  CAS  Google Scholar 

  84. Shih AY, Arkhipov A, Freddolino PL, Schulten K (2006) Coarse grained protein-lipid model with application to lipoprotein particles. J Phys Chem B 110(8):3674–3684

    PubMed  CAS  PubMed Central  Google Scholar 

  85. Marrink SJ, Tieleman DP (2013) Perspective on the Martini model. Chem Soc Rev 42(16): 6801–6822

    PubMed  CAS  Google Scholar 

  86. Yesylevskyy SO, Schafer LV, Sengupta D, Marrink SJ (2010) Polarizable water model for the coarse-grained MARTINI force field. PLoS Comput Biol 6(6):e1000810

    PubMed  PubMed Central  Google Scholar 

  87. Seo M, Rauscher S, Pomes R, Tieleman DP (2012) Improving internal peptide dynamics in the coarse-grained MARTINI model: toward large-scale simulations of amyloid- and Elastin-like peptides. J Chem Theory Comput 8(5): 1774–1785

    PubMed  CAS  PubMed Central  Google Scholar 

  88. Scott KA, Bond PJ, Ivetac A, Chetwynd AP, Khalid S, Sansom MSP (2008) Coarse-grained MD simulations of membrane protein-bilayer self-assembly. Structure 16(4):621–630

    PubMed  CAS  Google Scholar 

  89. Sengupta D, Marrink SJ (2010) Lipid-mediated interactions tune the association of glycophorin A helix and its disruptive mutants in membranes. Phys Chem Chem Phys 12(40): 12987–12996

    PubMed  CAS  Google Scholar 

  90. Periole X, Huber T, Marrink SJ, Sakmar TP (2007) G protein-coupled receptors self-assemble in dynamics simulations of model bilayers. J Am Chem Soc 129(33):10126–10132

    PubMed  CAS  Google Scholar 

  91. Periole X, Knepp AM, Sakmar TP, Marrink SJ, Huber T (2012) Structural determinants of the supramolecular organization of G protein-coupled receptors in bilayers. J Am Chem Soc 134(26):10959–10965

    PubMed  CAS  PubMed Central  Google Scholar 

  92. Deplazes E, Louhivuori M, Jayatilaka D, Marrink SJ, Corry B (2012) Structural investigation of MscL gating using experimental data and coarse grained MD simulations. PLoS Comput Biol 8(9):e1002683

    PubMed  CAS  PubMed Central  Google Scholar 

  93. Louhivuori M, Risselada HJ, van der Giessen E, Marrink SJ (2010) Release of content through mechano-sensitive gates in pressurized liposomes. Proc Natl Acad Sci U S A 107(46): 19856–19860.

    Google Scholar 

  94. Samuli Ollila OH, Louhivuori M, Marrink SJ, Vattulainen I (2011) Protein shape change has a major effect on the gating energy of a mechanosensitive channel. Biophys J 100(7): 1651–1659

    PubMed  CAS  PubMed Central  Google Scholar 

  95. Holdbrook DA, Leung YM, Piggot TJ, Marius P, Williamson PT, Khalid S (2010) Stability and membrane orientation of the fukutin transmembrane domain: a combined multiscale molecular dynamics and circular dichroism study. Biochemistry 49(51): 10796–10802

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Domanski J, Marrink SJ, Schafer LV (2012) Transmembrane helices can induce domain formation in crowded model membranes. Biochim Biophys Acta 1818(4):984–994

    PubMed  CAS  Google Scholar 

  97. Goose JE, Sansom MS (2013) Reduced lateral mobility of lipids and proteins in crowded membranes. PLoS Comput Biol 9(4):e1003033

    PubMed  CAS  PubMed Central  Google Scholar 

  98. Javanainen M, Hammaren H, Monticelli L, Jeon JH, Miettinen MS, Martinez-Seara H et al (2013) Anomalous and normal diffusion of proteins and lipids in crowded lipid membranes. Faraday Discuss 161:397–417, discussion 419-59

    PubMed  CAS  Google Scholar 

  99. Parton DL, Tek A, Baaden M, Sansom MS (2013) Formation of raft-like assemblies within clusters of influenza hemagglutinin observed by MD simulations. PLoS Comput Biol 9(4):e1003034

    PubMed  CAS  PubMed Central  Google Scholar 

  100. Chetwynd AP, Scott KA, Mokrab Y, Sansom MSP (2008) CGDB: A database of membrane protein/lipid interactions by coarse-grained molecular dynamics simulations. Mol Memb Biol 25(8):662–669

    CAS  Google Scholar 

  101. Stansfeld PJ, Sansom MSP (2011) From coarse grained to atomistic: a serial multiscale approach to membrane protein simulations. J Chem Theory Comput 7(4):1157–1166

    CAS  Google Scholar 

  102. Rzepiela AJ, Schafer LV, Goga N, Risselada HJ, De Vries AH, Marrink SJ (2010) Reconstruction of atomistic details from coarse-grained structures. J Comput Chem 31(6):1333–1343

    PubMed  CAS  Google Scholar 

  103. Patra M, Karttunen M, Hyvönen MT, Falck E, Lindqvist P, Vattulainen I (2003) Molecular dynamics simulations of lipid bilayers: major artifacts due to truncating electrostatic interactions. Biophys J 84:3636–3645

    PubMed  CAS  PubMed Central  Google Scholar 

  104. Patra M, Karttunen M, Hyvönen MT, Falck E, Vattulainen I (2004) Lipid bilayers driven to a wrong lane in molecular dynamics simulations by subtle changes in long-range electrostatic interactions. J Phys Chem B 108: 4485–4494

    CAS  Google Scholar 

  105. de Vries AH, Chandraskhar I, van Gunsteren WF, Hunenberger PH (2005) Molecular dynamics simulations of phospholipid bilayers: influence of artificial periodicity, system size, and simulation time. J Phys Chem B 109:11643–11652

    PubMed  Google Scholar 

  106. MacKerrell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Google Scholar 

  107. Domański J, Stansfeld P, Sansom MP, Beckstein O (2010) Lipidbook: a public repository for force-field parameters used in membrane simulations. J Membr Biol 236(3):255–258

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Leverhulme Trust and Unilever for support and Dr Jorge Pikunic for the BtuB coordinates and useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip C. Biggin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Biggin, P.C., Bond, P.J. (2015). Molecular Dynamics Simulations of Membrane Proteins. In: Kukol, A. (eds) Molecular Modeling of Proteins. Methods in Molecular Biology, vol 1215. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1465-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1465-4_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1464-7

  • Online ISBN: 978-1-4939-1465-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics