Skip to main content

Information-Driven Structural Modelling of Protein–Protein Interactions

  • Protocol
  • First Online:
Book cover Molecular Modeling of Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1215))

Abstract

Protein–protein docking aims at predicting the three-dimensional structure of a protein complex starting from the free forms of the individual partners. As assessed in the CAPRI community-wide experiment, the most successful docking algorithms combine pure laws of physics with information derived from various experimental or bioinformatics sources. Of these so-called “information-driven” approaches, HADDOCK stands out as one of the most successful representatives. In this chapter, we briefly summarize which experimental information can be used to drive the docking prediction in HADDOCK, and then focus on the docking protocol itself. We discuss and illustrate with a tutorial example a “classical” protein–protein docking prediction, as well as more recent developments for modelling multi-body systems and large conformational changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Melquiond AS, Karaca E, Kastritis PL et al (2012) Next challenges in protein–protein docking: from proteome to interactome and beyond. Comput Mol Sci 2:642–651

    Article  CAS  Google Scholar 

  2. Kastritis PL, Bonvin AM (2013) Molecular origins of binding affinity: seeking the Archimedean point. Curr Opin Struct Biol 23(6):868–877

    Article  PubMed  CAS  Google Scholar 

  3. Schlick T, Collepardo-Guevara R, Halvorsen LA et al (2011) Biomolecular modeling and simulation: a field coming of age. Quart Rev Biophys 44:191–228

    Article  CAS  Google Scholar 

  4. Janin J (2013) The targets of CAPRI rounds 20–27. Proteins 81(12):2075–2081

    Article  PubMed  CAS  Google Scholar 

  5. Lensink MF, Janin J (2013) Docking, scoring and affinity prediction in CAPRI. Proteins 81(12):2082–2095

    Article  PubMed  CAS  Google Scholar 

  6. de Vries SJ, Melquiond ASJ, Kastritis PL et al (2010) Strengths and weaknesses of data-driven docking in critical assessment of prediction of interactions. Proteins 78:3242–3249

    Article  PubMed  Google Scholar 

  7. Dominguez C, Boelens R, Bonvin AMJJ (2003) HADDOCK: a protein–protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125:1731–1737

    Article  PubMed  CAS  Google Scholar 

  8. Linge JP, Habeck M, Rieping W et al (2003) ARIA: automated NOE assignment and NMR structure calculation. Bioinformatics 19:315–316

    Article  PubMed  CAS  Google Scholar 

  9. Brünger AT, Adams PD, Clore GM et al (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905–921

    Article  PubMed  Google Scholar 

  10. Brunger AT (2007) Version 1.2 of the crystallography and NMR system. Nat Protocol 2:2728–2733

    Article  CAS  Google Scholar 

  11. de Vries SJ, Bonvin AMJJ (2008) How proteins get in touch: interface prediction in the study of biomolecular complexes. Curr Protein Pept Sci 9:394–406

    Article  PubMed  Google Scholar 

  12. Karaca E, Bonvin AMJJ (2013) Advances in integrative modeling of biomolecular complexes. Methods 59:372–381

    Article  PubMed  CAS  Google Scholar 

  13. Schmitz C, Melquiond AS, de Vries SJ et al (2012) Protein–protein docking with HADDOCK, NMR of biomolecules: towards mechanistic systems biology, 1st edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 521–535

    Google Scholar 

  14. Wang G, Louis JM, Sondej M et al (2000) Solution structure of the phosphoryl transfer complex between the signal transducing proteins HPr and IIA(glucose) of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system. EMBO J 19:5635–5649

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Bertini I, Calderone V, Cerofolini L et al (2012) The catalytic domain of MMP-1 studied through tagged lanthanides. FEBS Lett 586:557–567

    Article  PubMed  CAS  Google Scholar 

  16. Bax A (2003) Weak alignment offers new NMR opportunities to study protein structure and dynamics. Protein Sci 12:1–16

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Prestegard JH, Bougault CM, Kishore AI (2004) Residual dipolar couplings in structure determination of biomolecules. Chem Rev 104:3519–3540

    Article  PubMed  CAS  Google Scholar 

  18. Tjandra N (1997) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278:1111–1114

    Article  PubMed  CAS  Google Scholar 

  19. van Dijk ADJ, Fushman D, Bonvin AMJJ (2005) Various strategies of using residual dipolar couplings in NMR-driven protein docking: application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data. Proteins 60:367–381

    Article  PubMed  Google Scholar 

  20. Kalisman N, Adams CM, Levitt M (2012) Subunit order of eukaryotic TRiC/CCT chaperonin by cross-linking, mass spectrometry, and combinatorial homology modeling. Proc Natl Acad Sci U S A 109:2884–2889

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Choi UB, Strop P, Vrljic M et al (2010) Single-molecule FRET-derived model of the synaptotagmin 1-SNARE fusion complex. Nature 17:318–324

    CAS  Google Scholar 

  22. Brunger AT, Strop P, Vrljic M et al (2011) Three-dimensional molecular modeling with single molecule FRET. J Struct Biol 173:497–505

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Karaca E, Bonvin AMJJ (2013) On the usefulness of ion-mobility mass spectrometry and SAXS data in scoring docking decoys. Acta Cryst D69:683–694, 1–12

    Google Scholar 

  24. de Vries SJ, Bonvin AMJJ (2011) CPORT: a consensus interface predictor and its performance in prediction-driven docking with HADDOCK. PloS One 6:e17695

    Article  PubMed  PubMed Central  Google Scholar 

  25. Weigt M, White RA, Szurmant H et al (2009) Identification of direct residue contacts in protein–protein interaction by message passing. Proc Natl Acad Sci U S A 106:67–72

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Marks DS, Hopf TA, Sander C (2012) Protein structure prediction from sequence variation. Nat Biotechnol 30:1072–1080

    Article  PubMed  CAS  Google Scholar 

  27. Fernández-Recio J, Totrov M, Abagyan R (2004) Identification of protein–protein interaction sites from docking energy landscapes. J Mol Biol 335:843–865

    Article  PubMed  Google Scholar 

  28. Rodrigues JPGLM, Trellet M, Schmitz C et al (2012) Clustering biomolecular complexes by residue contacts similarity. Proteins 80:1810–1817

    PubMed  CAS  Google Scholar 

  29. Daura X, Gademann K, Jaun B et al (1999) Peptide folding: when simulation meets experiment. Angew Chem Int Ed 38:236–240

    Article  CAS  Google Scholar 

  30. Nilges M, O’Donoghue SI (1998) Ambiguous NOEs and automated NOE assignment. Progr Nucl Magn Reson Spectros 32:107–139

    Article  CAS  Google Scholar 

  31. Karaca E, Melquiond ASJ, de Vries SJ et al (2010) Building macromolecular assemblies by information-driven docking: introducing the HADDOCK multibody docking server. Mol Cell Proteomics 9:1784–1794

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Nilges M (1993) A calculation strategy for the structure determination of symmetric dimers by 1H NMR. Proteins 17:297–309

    Article  PubMed  CAS  Google Scholar 

  33. Schmitz C, Bonvin AMJJ (2011) Protein–protein HADDocking using exclusively pseudocontact shifts. J Biomol NMR 50:263–266

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Lee B, Richards FM (1971) The interpretation of protein structures: estimation of static accessibility. J Mol Biol 55:379–400

    Article  PubMed  CAS  Google Scholar 

  35. Karaca E, Bonvin AMJJ (2011) A multidomain flexible docking approach to deal with large conformational changes in the modeling of biomolecular complexes. Structure 19:555–565

    Article  PubMed  CAS  Google Scholar 

  36. van Dijk ADJ, Bonvin AMJJ (2006) Solvated docking: introducing water into the modelling of biomolecular complexes. Bioinformatics 22:2340–2347

    Article  PubMed  Google Scholar 

  37. Kastritis PL, van Dijk ADJ, Bonvin AMJJ (2012) Explicit treatment of water molecules in data-driven protein–protein docking: the solvated HADDOCKing approach. Methods Mol Biol 819:355–374

    Article  PubMed  CAS  Google Scholar 

  38. Kastritis PL, Visscher KM, van Dijk ADJ et al (2013) Solvated protein–protein docking using Kyte-Doolittle-based water preferences. Proteins 81:510–518

    Article  PubMed  CAS  Google Scholar 

  39. van Dijk M, Visscher KM, Kastritis PL et al (2013) Solvated protein-DNA docking using HADDOCK. J Biomol NMR 56:51–63

    Article  PubMed  CAS  Google Scholar 

  40. Krzeminski M, Loth K, Boelens R et al (2010) SAMPLEX: automatic mapping of perturbed and unperturbed regions of proteins and complexes. BMC Bioinformatics 11:51

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schüttelkopf AW, van Aalten DMF (2004) PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr D Biol Crystallogr 60:1355–1363

    Article  PubMed  Google Scholar 

  42. Sousa da Silva AW, Vranken WF (2012) ACPYPE – AnteChamber PYthon Parser interfacE. BMC Res Notes 5:367

    Article  PubMed  PubMed Central  Google Scholar 

  43. Malde AK, Zuo L, Breeze M et al (2011) An automated force field topology builder (ATB) and repository: version 1.0. J Chem Theor Comput 7:4026–4037

    Article  CAS  Google Scholar 

  44. Lemkul JA, Allen WJ, Bevan DR (2010) Practical considerations for building GROMOS-compatible small-molecule topologies. J Chem Inf Model 50:2221–2235

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre M. J. J. Bonvin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rodrigues, J.P.G.L.M., Karaca, E., Bonvin, A.M.J.J. (2015). Information-Driven Structural Modelling of Protein–Protein Interactions. In: Kukol, A. (eds) Molecular Modeling of Proteins. Methods in Molecular Biology, vol 1215. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1465-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1465-4_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1464-7

  • Online ISBN: 978-1-4939-1465-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics