Skip to main content

De Novo Membrane Protein Structure Prediction

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1215))

Abstract

Recent advances in identifying residue–residue contacts from large multiple sequence alignments have enabled impressive gains to be made in the field of protein structure prediction. In this chapter, we discuss these advances and provide a step-by-step guide to applying the latest tools to the de novo modelling of alpha-helical transmembrane proteins. As a practical example, we demonstrate the process of building an accurate 3D model of a G protein-coupled receptor, correctly orientated in the membrane, using only its primary protein sequence.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1:727–730

    Article  PubMed  CAS  Google Scholar 

  2. Kloppmann E, Punta M, Rost B (2012) Structural genomics plucks high-hanging membrane proteins. Curr Opin Struct Biol 22:326–332

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Pieper U, Schlessinger A, Kloppmann E et al (2013) Coordinating the impact of structural genomics on the human α-helical transmembrane proteome. Nat Struct Mol Biol 20:135–138

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Käll L, Krogh A, Sonnhammer ELL (2005) An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics 21(Suppl 1):i251–i257

    Article  PubMed  Google Scholar 

  5. Bernsel A, Viklund H, Falk J et al (2008) Prediction of membrane-protein topology from first principles. Proc Natl Acad Sci U S A 105:7177–7181

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Viklund H, Bernsel A, Skwark M et al (2008) SPOCTOPUS: a combined predictor of signal peptides and membrane protein topology. Bioinformatics 24:2928–2929

    Article  PubMed  CAS  Google Scholar 

  7. Viklund H, Elofsson A (2008) OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. Bioinformatics 24:1662–1668

    Article  PubMed  CAS  Google Scholar 

  8. Bernsel A, Viklund H, Hennerdal A et al (2009) TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res 37:W465–W468

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Nugent T, Jones DT (2009) Transmembrane protein topology prediction using support vector machines. BMC Bioinformatics 10:159

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nugent T, Jones DT (2012) Detecting pore-lining regions in transmembrane protein sequences. BMC Bioinformatics 13:169

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kelm S, Shi J, Deane CM (2010) MEDELLER: homology-based coordinate generation for membrane proteins. Bioinformatics 26:2833–2840

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Hill JR, Deane CM (2013) MP-T: improving membrane protein alignment for structure prediction. Bioinformatics 29:54–61

    Article  PubMed  CAS  Google Scholar 

  13. Olivella M, Gonzalez A, Pardo L et al (2013) Relation between sequence and structure in membrane proteins. Bioinformatics 29:1589–1592

    Article  PubMed  CAS  Google Scholar 

  14. Pellegrini-Calace M, Carotti A, Jones DT (2003) Folding in lipid membranes (FILM): a novel method for the prediction of small membrane protein 3D structures. Proteins 50:537–545

    Article  PubMed  CAS  Google Scholar 

  15. Yarov-Yarovoy V, Schonbrun J, Baker D (2006) Multipass membrane protein structure prediction using Rosetta. Proteins 62:1010–1025

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Barth P, Wallner B, Baker D (2009) Prediction of membrane protein structures with complex topologies using limited constraints. Proc Natl Acad Sci U S A 106:1409–1414

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Barth P, Schonbrun J, Baker D (2007) Toward high-resolution prediction and design of transmembrane helical protein structures. Proc Natl Acad Sci U S A 104:15682–15687

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Jones DT (1997) Successful ab initio prediction of the tertiary structure of NK-lysin using multiple sequences and recognized supersecondary structural motifs. Proteins Suppl 1:185–191

    Article  PubMed  CAS  Google Scholar 

  19. Jones DT, McGuffin LJ (2003) Assembling novel protein folds from super-secondary structural fragments. Proteins 53(Suppl 6):480–485

    Article  PubMed  CAS  Google Scholar 

  20. Hurwitz N, Pellegrini-Calace M, Jones DT (2006) Towards genome-scale structure prediction for transmembrane proteins. Phil Trans Roy Soc Lond B Biol Sci 361:465–475

    Article  CAS  Google Scholar 

  21. Simons KT, Bonneau R, Ruczinski I et al (1999) Ab initio protein structure prediction of CASP III targets using ROSETTA. Proteins Suppl 3:171–176

    Article  PubMed  CAS  Google Scholar 

  22. Rohl CA, Strauss CEM, Misura KMS et al (2004) Protein structure prediction using Rosetta. Methods Enzymol 383:66–93

    Article  PubMed  CAS  Google Scholar 

  23. Fuchs A, Kirschner A, Frishman D (2009) Prediction of helix-helix contacts and interacting helices in polytopic membrane proteins using neural networks. Proteins 74:857–871

    Article  PubMed  CAS  Google Scholar 

  24. Lo A, Chiu Y-Y, Rødland EA et al (2009) Predicting helix-helix interactions from residue contacts in membrane proteins. Bioinformatics 25:996–1003

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Nugent T, Jones DT (2010) Predicting transmembrane helix packing arrangements using residue contacts and a force-directed algorithm. PLoS Comput Biol 6:e1000714

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sadowski MI, Taylor WR (2013) Prediction of protein contacts from correlated sequence substitutions. Sci Prog 96:33–42

    Article  PubMed  CAS  Google Scholar 

  27. Lapedes A, Giraud B, Liu L et al (1999) Correlated mutations in models of protein sequences: phylogenetic and structural effects. Stat Mol Biol Genet 33:236–256

    Article  Google Scholar 

  28. Weigt M, White RA, Szurmant H et al (2008) Identification of direct residue contacts in protein–protein interaction by message passing. Proc Natl Acad Sci U S A 106(1):67–72

    Article  PubMed  PubMed Central  Google Scholar 

  29. Taylor WR, Sadowski MI (2011) Structural constraints on the covariance matrix derived from multiple aligned protein sequences. PLoS One 6:e28265

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9:432–441

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jones DT, Buchan DWA, Cozzetto D et al (2012) PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments. Bioinformatics 28:184–190

    Article  PubMed  CAS  Google Scholar 

  32. Taylor WR, Jones DT, Sadowski MI (2012) Protein topology from predicted residue contacts. Protein Sci 21:299–305

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Ekeberg M, Lövkvist C, Lan Y et al (2013) Improved contact prediction in proteins: using pseudolikelihoods to infer Potts models. Phys Rev E Stat Nonlin Soft Matter Phys 87:012707

    Article  PubMed  Google Scholar 

  34. Skwark MJ, Abdel-Rehim A, Elofsson A (2013) PconsC: combination of direct information methods and alignments improves contact prediction. Bioinformatics 29:1815–1816

    Article  PubMed  CAS  Google Scholar 

  35. Marks DS, Colwell LJ, Sheridan R et al (2011) Protein 3D structure computed from evolutionary sequence variation. PLoS One 6:e28766

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Hopf TA, Colwell LJ, Sheridan R et al (2012) Three-dimensional structures of membrane proteins from genomic sequencing. Cell 149:1607–1621

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Nugent T, Jones DT (2012) Accurate de novo structure prediction of large transmembrane protein domains using fragment-assembly and correlated mutation analysis. Proc Natl Acad Sci U S A 109:E1540–E1547

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Remmert M, Biegert A, Hauser A et al (2011) HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods 9:173–175

    Article  PubMed  Google Scholar 

  39. Magrane M, Consortium U (2011) UniProt knowledgebase: a hub of integrated protein data. J Biol Databases Curat, Database, p 2011

    Google Scholar 

  40. Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29–W37

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Granseth E, Viklund H, Elofsson A (2006) ZPRED: predicting the distance to the membrane center for residues in -helical membrane proteins. Bioinformatics 22:e191–e196

    Article  PubMed  CAS  Google Scholar 

  42. Martí-Renom MA, Stuart AC, Fiser A et al (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325

    Article  PubMed  Google Scholar 

  43. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  PubMed  CAS  Google Scholar 

  44. Nugent T, Jones DT (2013) Membrane protein orientation and refinement using a knowledge-based statistical potential. BMC Bioinformatics 14:276

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schrödinger L (2010) The PyMOL molecular graphics system, version 1.3r1

    Google Scholar 

  46. Tusnády GE, Dosztányi Z, Simon I (2005) TMDET: web server for detecting transmembrane regions of proteins by using their 3D coordinates. Bioinformatics 21:1276–1277

    Article  PubMed  Google Scholar 

  47. Senes A, Chadi DC, Law PB et al (2007) E(z), a depth-dependent potential for assessing the energies of insertion of amino acid side-chains into membranes: derivation and applications to determining the orientation of transmembrane and interfacial helices. J Mol Biol 366:436–448

    Article  PubMed  CAS  Google Scholar 

  48. Lomize MA, Pogozheva ID, Joo H et al (2012) OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res 40:D370–D376

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Xu J, Zhang Y (2010) How significant is a protein structure similarity with TM-score = 0.5? Bioinformatics 26:889–895

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Bryson K, Cozzetto D, Jones DT (2007) Computer-assisted protein domain boundary prediction using the DomPred server. Curr Protein Pept Sci 8:181–188

    Article  PubMed  CAS  Google Scholar 

  51. Punta M, Coggill PC, Eberhardt RY et al (2012) The Pfam protein families database. Nucleic Acids Res 40:D290–D301

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Nugent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nugent, T. (2015). De Novo Membrane Protein Structure Prediction. In: Kukol, A. (eds) Molecular Modeling of Proteins. Methods in Molecular Biology, vol 1215. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1465-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1465-4_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1464-7

  • Online ISBN: 978-1-4939-1465-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics