Skip to main content

Accelerated Molecular Dynamics and Protein Conformational Change: A Theoretical and Practical Guide Using a Membrane Embedded Model Neurotransmitter Transporter

  • Protocol
  • First Online:
Molecular Modeling of Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1215))

Abstract

Molecular dynamics simulation provides a powerful and accurate method to model protein conformational change, yet timescale limitations often prevent direct assessment of the kinetic properties of interest. A large number of molecular dynamic steps are necessary for rare events to occur, which allow a system to overcome energy barriers and conformationally transition from one potential energy minimum to another. For many proteins, the energy landscape is further complicated by a multitude of potential energy wells, each separated by high free-energy barriers and each potentially representative of a functionally important protein conformation. To overcome these obstacles, accelerated molecular dynamics utilizes a robust bias potential function to simulate the transition between different potential energy minima. This straightforward approach more efficiently samples conformational space in comparison to classical molecular dynamics simulation, does not require advanced knowledge of the potential energy landscape and converges to the proper canonical distribution. Here, we review the theory behind accelerated molecular dynamics and discuss the approach in the context of modeling protein conformational change. As a practical example, we provide a detailed, step-by-step explanation of how to perform an accelerated molecular dynamics simulation using a model neurotransmitter transporter embedded in a lipid cell membrane. Changes in protein conformation of relevance to the substrate transport cycle are then examined using principle component analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lindorff-Larsen K, Piana S, Dror RO, Shaw DE (2011) How fast-folding proteins fold. Science 334(6055):517–520. doi:10.1126/science.1208351

    Article  PubMed  CAS  Google Scholar 

  2. Shaw DE, Maragakis P, Lindorff-Larsen K, Piana S, Dror RO, Eastwood MP, Bank JA, Jumper JM, Salmon JK, Shan Y, Wriggers W (2010) Atomic-level characterization of the structural dynamics of proteins. Science 330(6002):341–346. doi:10.1126/science.1187409

    Article  PubMed  CAS  Google Scholar 

  3. Genchev GZ, Kallberg M, Gursoy G, Mittal A, Dubey L, Perisic O, Feng G, Langlois R, Lu H (2009) Mechanical signaling on the single protein level studied using steered molecular dynamics. Cell Biochem Biophys 55(3):141–152. doi:10.1007/s12013-009-9064-5

    Article  PubMed  CAS  Google Scholar 

  4. Baker JL, Biais N, Tama F (2013) Steered molecular dynamics simulations of a type IV pilus probe initial stages of a force-induced conformational transition. PLoS Comput Biol 9(4):e1003032. doi:10.1371/journal.pcbi.1003032

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Forti F, Boechi L, Estrin DA, Marti MA (2011) Comparing and combining implicit ligand sampling with multiple steered molecular dynamics to study ligand migration processes in heme proteins. J Comput Chem. doi:10.1002/jcc.21805

    PubMed  Google Scholar 

  6. Li W, Shen J, Liu G, Tang Y, Hoshino T (2011) Exploring coumarin egress channels in human cytochrome P450 2A6 by random acceleration and steered molecular dynamics simulations. Proteins 79(1):271–281. doi:10.1002/prot.22880

    Article  PubMed  CAS  Google Scholar 

  7. Shen M, Guan J, Xu L, Yu Y, He J, Jones GW, Song Y (2012) Steered molecular dynamics simulations on the binding of the appendant structure and helix-beta2 in domain-swapped human cystatin C dimer. J Biomol Struct Dyn 30(6):652–661. doi:10.1080/07391102.2012.689698

    Article  PubMed  CAS  Google Scholar 

  8. Xu L, Hasin N, Shen M, He J, Xue Y, Zhou X, Perrett S, Song Y, Jones GW (2013) Using steered molecular dynamics to predict and assess Hsp70 substrate-binding domain mutants that alter prion propagation. PLoS Comput Biol 9(1):e1002896. doi:10.1371/journal.pcbi.1002896

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Hamelberg D, Mongan J, McCammon JA (2004) Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys 120(24):11919–11929. doi:10.1063/1.1755656

    Article  PubMed  CAS  Google Scholar 

  10. Bucher D, Grant BJ, Markwick PR, McCammon JA (2011) Accessing a hidden conformation of the maltose binding protein using accelerated molecular dynamics. PLoS Comput Biol 7(4):e1002034. doi:10.1371/journal.pcbi.1002034

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Grant BJ, Gorfe AA, McCammon JA (2009) Ras conformational switching: simulating nucleotide-dependent conformational transitions with accelerated molecular dynamics. PLoS Comput Biol 5(3):e1000325. doi:10.1371/journal.pcbi.1000325

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mucksch C, Urbassek HM (2013) Enhancing protein adsorption simulations by using accelerated molecular dynamics. PLoS One 8(6):e64883. doi:10.1371/journal.pone.0064883

    Article  PubMed  PubMed Central  Google Scholar 

  13. de Oliveira CA, Grant BJ, Zhou M, McCammon JA (2011) Large-scale conformational changes of Trypanosoma cruzi proline racemase predicted by accelerated molecular dynamics simulation. PLoS Comput Biol 7(10):e1002178. doi:10.1371/journal.pcbi.1002178

    Article  PubMed  PubMed Central  Google Scholar 

  14. Salmon L, Pierce L, Grimm A, Ortega Roldan JL, Mollica L, Jensen MR, van Nuland N, Markwick PR, McCammon JA, Blackledge M (2012) Multi-timescale conformational dynamics of the SH3 domain of CD2-associated protein using NMR spectroscopy and accelerated molecular dynamics. Angew Chem 51(25):6103–6106. doi:10.1002/anie.201202026

    Article  CAS  Google Scholar 

  15. Thomas JR, Gedeon PC, Grant BJ, Madura JD (2012) LeuT conformational sampling utilizing accelerated molecular dynamics and principal component analysis. Biophys J 103(1):L1–L3. doi:10.1016/j.bpj.2012.05.002

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802. doi:10.1002/jcc.20289

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Wang Y, Harrison CB, Schulten K, McCammon JA (2011) Implementation of accelerated molecular dynamics in NAMD. Comput Sci Discov 4(1):pii: 015002, doi:10.1088/1749-4699/4/1/015002

    Article  Google Scholar 

  18. Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Hayik S, Roitberg A, Seabra G, Swails J, Goetz AW, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wolf RM, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh MJ, Cui G, Roe DR, Mathews DH, Seetin MG, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2012) AMBER 12. University of California, San Francisco

    Google Scholar 

  19. Pierce LC, Salomon-Ferrer R, Augusto FOC, McCammon JA, Walker RC (2012) Routine access to millisecond time scale events with accelerated molecular dynamics. J Chem Theory Comput 8(9):2997–3002. doi:10.1021/ct300284c

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Voter AF (1997) Hyperdynamics: accelerated molecular dynamics of infrequent events. Phys Rev Lett 78(20):3908–3911

    Article  CAS  Google Scholar 

  21. Voter AF (1997) A method for accelerating the molecular dynamics simulation of infrequent events. J Chem Phys 106(11):4665–4677. doi:10.1063/1.473503

    Article  CAS  Google Scholar 

  22. Steiner MM, Genilloud PA, Wilkins JW (1998) Simple bias potential for boosting molecular dynamics with the hyperdynamics scheme. Phys Rev B 57(17):10236–10239

    Article  CAS  Google Scholar 

  23. Rahman JA, Tully JC (2002) Puddle-skimming: an efficient sampling of multidimensional configuration space. J Chem Phys 116(20):8750–8760. doi:10.1063/1.1469605

    Article  CAS  Google Scholar 

  24. Shen T, Hamelberg D (2008) A statistical analysis of the precision of reweighting-based simulations. J Chem Phys 129(3):034103. doi:10.1063/1.2944250

    Article  PubMed  Google Scholar 

  25. Xin Y, Doshi U, Hamelberg D (2010) Examining the limits of time reweighting and Kramers’ rate theory to obtain correct kinetics from accelerated molecular dynamics. J Chem Phys 132(22):224101. doi:10.1063/1.3432761

    Article  PubMed  Google Scholar 

  26. Gedeon PC, Indarte M, Surratt CK, Madura JD (2010) Molecular dynamics of leucine and dopamine transporter proteins in a model cell membrane lipid bilayer. Proteins 78(4):797–811. doi:10.1002/prot.22601

    Article  PubMed  CAS  Google Scholar 

  27. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. doi:10.1002/jcc.20084

    Article  PubMed  CAS  Google Scholar 

  28. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815. doi:10.1006/jmbi.1993.1626

    Article  PubMed  CAS  Google Scholar 

  29. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38, 27-38

    Article  PubMed  CAS  Google Scholar 

  30. Grant BJ, Rodrigues AP, ElSawy KM, McCammon JA, Caves LS (2006) Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics 22(21):2695–2696. doi:10.1093/bioinformatics/btl461

    Article  PubMed  CAS  Google Scholar 

  31. Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/Cl−-dependent neurotransmitter transporters. Nature 437(7056):215–223. doi:10.1038/nature03978

    Article  PubMed  CAS  Google Scholar 

  32. Shen MY, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein 15(11):2507–2524. doi:10.1110/ps.062416606

    Article  CAS  Google Scholar 

  33. Aksimentiev A, Sotomayor M, Wells D (2012) Membrane proteins tutorial. Theoretical and Computational Biophysics Group, University of Illinois at Urbana-Champaign, Champaign

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffry D. Madura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gedeon, P.C., Thomas, J.R., Madura, J.D. (2015). Accelerated Molecular Dynamics and Protein Conformational Change: A Theoretical and Practical Guide Using a Membrane Embedded Model Neurotransmitter Transporter. In: Kukol, A. (eds) Molecular Modeling of Proteins. Methods in Molecular Biology, vol 1215. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1465-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1465-4_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1464-7

  • Online ISBN: 978-1-4939-1465-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics