Skip to main content

Investigating In Vitro Angiogenesis by Computer-Assisted Image Analysis and Computational Simulation

  • Protocol
  • First Online:
  • 2406 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1214))

Abstract

In vitro assays that stimulate the formation of capillary-like structures by EC have become increasingly popular, because they allow the study of the EC’s intrinsic ability to self-organize to form vascular-like patterns. Here we describe a widely applied protocol involving the use of basement membrane matrix (Matrigel) as a suitable environment to induce an angiogenic phenotype in cultured EC. EC differentiation on basement membrane matrix is a highly specific process, which recapitulates many steps in blood vessel formation and for this reason it is presently considered as a reliable in vitro tool to identify factors with potential antiangiogenic or pro-angiogenic properties. The morphological features of the obtained cell patterns can also be accurately quantified by computer-assisted image analysis and the main steps of such a procedure will be here outlined and discussed. The dynamics of in vitro EC self-organization is a complex biological process, involving a network of interactions between a high number of cells. For this reason, the combined use of in vitro experiments and computational modeling can represent a key approach to unravel how mechanical and chemical signaling by EC coordinates their organization into capillary-like tubes. Thus, a particularly helpful approach to modeling is also briefly described together with examples of its application.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Folkman J, D’Amore PA (1996) Blood vessel formation: what is its molecular basis ? Cell 87: 1153–1155

    Article  CAS  PubMed  Google Scholar 

  2. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–37

    Article  CAS  PubMed  Google Scholar 

  3. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  CAS  PubMed  Google Scholar 

  4. Gimbrone MA Jr, Cotran RS, Folkman J (1973) Endothelial regeneration: studies with human endothelial cell cultures. Series Haematol 6: 453–455

    Google Scholar 

  5. Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52:2745–2756

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Folkman J, Haudenschild CC, Zetter BR (1979) Long-term culture of capillary endothelial cells. Proc Natl Acad Sci U S A 76: 5217–5221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Staton CA, Stribbling SM, Tazzyman S, Hughes R, Brown NJ, Lewis CE (2004) Current methods for assaying angiogenesis in vitro and in vivo. Int J Exp Pathol 85: 233–248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Kalluri R (2003) Angiogenesis: basement membrane structure, assembly and role in tumor angiogenesis. Nat Rev Cancer 3: 422–433

    Article  CAS  PubMed  Google Scholar 

  9. Guidolin D, Albertin G, Ribatti D (2010) Exploring in vitro angiogenesis by image analysis and mathematical modeling. In: Méndez-Vilas A, Diaz J (eds) Microscopy: science, technology, applications and education, vol 2. Formatex, Badajoz, pp 876–884

    Google Scholar 

  10. Kleinman HK, Mc Garve ML, Hassel JR, Star VL, Cannon FB, Laurie GW et al (1986) Basement membrane complexes with biological activity. Biochemistry 25:312–318

    Article  CAS  PubMed  Google Scholar 

  11. Kubota Y, Kleinman HK, Martin GR, Lawley TJ (1988) Role of laminin and basement membrane in the differentiation of human endothelial cells into capillary-like structures. J Cell Biol 107:1589–1597

    Article  CAS  PubMed  Google Scholar 

  12. Arnaoutova I, George J, Kleinman HK, Benton G (2009) The endothelial cell tube formation assay on basement membrane turns 20: state of the science and the art. Angiogenesis 12: 267–274

    Article  PubMed  Google Scholar 

  13. Donovan D, Brown NJ, Bishop ET, Lewis CE (2001) Comparison of three in vitro human ‘angiogenesis’ assays with capillaries formed in vivo. Angiogenesis 4:113–121

    Article  CAS  PubMed  Google Scholar 

  14. Albertin G, Guidolin D, Sorato E, Spinazzi R, Mascarin A, Oselladore B et al (2009) Pro-angiogenic activity of urotensin-II on different human vascular endothelial cell populations. Regul Pept 157:64–71

    Article  CAS  PubMed  Google Scholar 

  15. Kleinman HK, Martin GR (2005) Matrigel: basement membrane extracellular matrix with biological activity. Semin Cancer Biol 15: 378–386

    Article  CAS  PubMed  Google Scholar 

  16. Montañez E, Casaroli-Marano RP, Vilaro S, Pagan R (2002) Comparative study of tube assembly in three-dimensional collagen matrix and on Matrigel coats. Angiogenesis 5:167–172

    Article  PubMed  Google Scholar 

  17. Yin Y, Que J, The M, Cao WP, El Oakley RM, Lim SK (2004) Embryonic cell lines with endothelial potential: an in vitro system for studying endothelial differentiation. Arterioscler Thromb Vasc Biol 24:691–696

    Article  CAS  PubMed  Google Scholar 

  18. Guidolin D, Albertin G (2012) Tube formation in vitro angiogenesis assay. In: Conn P. M. (Ed.), Meth Cell Biol 112: 281–293

    Google Scholar 

  19. Benelli R, Albini A (1999) In vitro models of angiogenesis: the use of Matrigel. Int J Biol Markers 14:243–246

    CAS  PubMed  Google Scholar 

  20. Auerbach R, Lewis R, Shinners B, Kubai L, Akhtar N (2003) Angiogenesis assays: a critical overview. Clin Chem 49:32–40

    Article  CAS  PubMed  Google Scholar 

  21. Sanz L, Pascual M, Munoz A, González MA, Salvador CH, Alvarez-Vallina L (2002) Development of a computer-assisted high-throughput screening platform for anti-angiogenic therapy. Microvasc Res 63:335–339

    Article  CAS  PubMed  Google Scholar 

  22. Guidolin D, Vacca A, Nussdorfer GG, Ribatti D (2004) A new image analysis method based on topological and fractal parameters to evaluate the angiostatic activity of docetaxel by using the Matrigel assay in vitro. Microvasc Res 67: 117–124

    Article  CAS  PubMed  Google Scholar 

  23. Boas SEM, Palm MM, Koolwijk P, Merks RMH (2013) Computational modeling of angiogenesis: towards a multi-scale understanding of cell-cell and cell-matrix interaction. In: Reinhart-King C. (Ed.). Mechanical and chemical signaling in angiogenesis. Studies in Mechanobiology, Tissue engineering and Biomaterials 12, 161–183

    Google Scholar 

  24. Kurz H, Sandau K, Christ B (1997) On the bifurcation of blood vessels—Wilhelm Roux’s doctoral thesis (Jena 1878)—a seminal work for biophysical modelling in developmental biology. Ann Anat 179:33–36

    Article  CAS  PubMed  Google Scholar 

  25. Thompson DW (1917) On growth and form. Cambridge University Press, Cambridge

    Google Scholar 

  26. Guidolin D, Rebuffat P, Albertin G (2011) Cell-oriented modeling of angiogenesis. ScientificWorldJournal 11:1735–1748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. MacGabhann F, Popel S (2006) Targeting neuropilin-1 to inhibit VEGF signaling in cancer: comparison of therapeutic approaches. PLoS Comput Biol 2:180

    Article  Google Scholar 

  28. Krul T, Kaandorp J, Blom JG (2003) Modeling developmental regulatory networks. In: Sloot PMA, Abramson D, Bogdanov AV et al. (Eds.). Proceedings of the International Conference on Computational Science, (ICCS ’03). Lect Notes Comp Sci 2657, 688–697

    Google Scholar 

  29. Ambrosi D, Gamba A, Serini G (2004) Cell directional persistence and chemotaxis in vascular morphogenesis. Bull Math Biol 66: 1851–1873

    Article  CAS  PubMed  Google Scholar 

  30. Aubert M, Chaplain MA, McDougall SR, Devlin A, Mitchell CA (2011) A continuum mathematical model of the developing murine retinal vasculature. Bull Math Biol 73: 2430–2451

    Article  CAS  PubMed  Google Scholar 

  31. Merks RMH, Glazier JA (2005) A cell-centered approach to developmental biology. Physica A 352:113–130

    Article  CAS  Google Scholar 

  32. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  33. Cickovski T, Aras K, Swat M, Izaguirre JA, Swat M, Glazier JA (2007) From genes to organisms via the cell: a problem-solving environment for multicellular development. Comput Sci Eng 9:50–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Guidolin D, Nico B, Mazzocchi G, Vacca A, Nussdorfer GG, Ribatti D (2004) Order and disorder in the vascular network. Leukemia 18: 1745–1750

    Article  CAS  PubMed  Google Scholar 

  35. Minamikawa-Tachino R, Ogura K, Gotoh T (2013) Mesh-loosening quantification of inhibition of angiogenic tube formation through image analysis. Assay Drug Dev Technol 11: 25–34

    Article  CAS  PubMed  Google Scholar 

  36. Mandelbrot B (1982) The fractal geometry of nature. W.H.Freeman, New York

    Google Scholar 

  37. Vico PG, Kyriacos S, Heymans O, Louryan S, Cartilier L (1998) Dynamic study of the extraembryonic vascular network of the chick embryo by fractal analysis. J Theor Biol 195: 525–532

    Article  CAS  PubMed  Google Scholar 

  38. Guidolin D, Crivellato E, Ribatti D (2011) The “self-similarity” logic applied to the development of the vascular system. Dev Biol 351: 156–162

    Article  CAS  PubMed  Google Scholar 

  39. Russ JC (2011) The image processing handbook, 6th edn. Taylor & Francis Group, Boca Raton

    Google Scholar 

  40. Jenne R, Banadda E, Smets I, Deurinck J, Van Impe J (2007) Detection of filamentous bulking problems: developing an image analysis system for sludge composition monitoring. Microsc Microanal 13:36–41

    Article  CAS  PubMed  Google Scholar 

  41. Seul M, O’Gorman L, Sammon MJ (2000) Practical algorithms for image analysis. Cambridge University Press, New York

    Google Scholar 

  42. Smith TG, Lange GD, Marks WB (1996) Fractal methods and results in cellular morphology—dimensions, lacunarity and multifractals. J Neurosci Methods 69:123–136

    Article  PubMed  Google Scholar 

  43. Li J, Du Q, Sun C (2009) An improved box-counting method for image fractal dimension estimation. Pattern Recognit 42:2460–2469

    Article  Google Scholar 

  44. Merks RMH, Brodsky SV, Goligorsky MS, Newman SA, Glazier JA (2006) Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev Biol 289:44–54

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Glazier JA, Graner F (1993) Simulation of the differential adhesion driven rearrangement of biological cells. Phys Rev E 47:2128–2154

    Article  Google Scholar 

  46. Guidolin D, Albertin G, Sorato E, Oselladore B, Mascarin A, Ribatti D (2009) Mathematical modelling of the capillary-like pattern generated by adrenomedullin-treated human vascular endothelial cells in vitro. Dev Dyn 238: 1951–1963

    Article  CAS  PubMed  Google Scholar 

  47. Guidolin D, Nico B, Belloni AS, Nussdorfer GG, Vacca A, Ribatti D (2007) Morphometry and mathematical modelling of the capillary-like patterns formed in vitro by bone marrow macrophages of patients with multiple myeloma. Leukemia 21:2201–2203

    Article  CAS  PubMed  Google Scholar 

  48. Guidolin D, Albertin G, Spinazzi R, Sorato E, Mascarin A, Cavallo D et al (2008) Adrenomedullin stimulates angiogenic response in cultured human vascular endothelial cells: involvement of the vascular endothelial growth factor receptor 2. Peptides 29:2013–2023

    Article  CAS  PubMed  Google Scholar 

  49. Vukicevic S, Kleinman HK, Luyten FP, Roberts AB, Roche NS, Reddi AH (1992) Identification of multiple active growth factors in basement membrane matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp Cell Res 202:1–8

    Article  CAS  PubMed  Google Scholar 

  50. Gory-Fauré S, Prandini MH, Pointu H, Roullot V, Pignot-Paintrand I, Vernet M et al (1999) Role of vascular endothelial-cadherin in vascular morphogenesis. Development 126: 2093–2102

    PubMed  Google Scholar 

  51. Merks RMH, Newman SA, Glazier JA (2004) Cell-oriented modelling of in vitro capillary development. Lect Notes Comput Sci 3305: 425–434

    Article  Google Scholar 

  52. Helmlinger G, Endo M, Ferrara N, Hlatky L, Jain RK (2000) Formation of endothelial cell networks. Nature 405:139–141

    Article  CAS  PubMed  Google Scholar 

  53. Fernandez-Sauze S, Delfino C, Mabrouk K, Dussert C, Chinot O, Martin PM (2004) Effects of adrenomedullin on endothelial cells in the multistep process of angiogenesis: involvement of CRLR/RAMP2 and CRLR/RAMP3 receptors. Int J Cancer 108:797–804

    Article  CAS  PubMed  Google Scholar 

  54. LeVeque RJ (2007) Finite Difference methods for ordinary and partial differential equations: steady state and time-dependent problems. SIAM, Philadelphia

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Guidolin Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Guidolin, D., Fede, C., Albertin, G., De Caro, R. (2015). Investigating In Vitro Angiogenesis by Computer-Assisted Image Analysis and Computational Simulation. In: Ribatti, D. (eds) Vascular Morphogenesis. Methods in Molecular Biology, vol 1214. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1462-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1462-3_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1461-6

  • Online ISBN: 978-1-4939-1462-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics