Fluorescence In Situ Hybridization for Detection of Small RNAs on Frozen Tissue Sections

  • Asli SilahtarogluEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1211)


MicroRNAs are an abundant class of small noncoding RNAs that regulate and fine-tune the expression of protein-coding genes. Each microRNA regulates around 100 genes, and they are mostly conserved and abundant within the multicellular organisms. Even though microRNAs have a role in many biological processes and diseases, the function of each single microRNA is still yet to be explored in all tissues and cells they are present. Therefore, an efficient in situ hybridization method, combining locked nucleic acid technology and tyramide signal amplification system, has been developed and presented for detection of microRNAs in frozen section at a cellular resolution and with high sensitivity.

Key words

MicroRNA FISH MicroRNA miRNA In situ hybridization ISH FISH Locked nucleic acids LNA Tyramide signal amplification Noncoding RNAs 


  1. 1.
    Alexander RP, Fang G, Rozowsky J et al (2010) Annotating non-coding regions of the genome. Nat Rev Genet 11:559–571PubMedCrossRefGoogle Scholar
  2. 2.
    Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Khachane AN, Harrison PM (2010) Mining mammalian transcript data for functional long non-coding RNAs. PLoS One 5:e10316PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Fejes-Toth K, Sotirova V, Sachidanandam R et al (2009) Post-transcriptional processing generates a diversity of 5’-modified long and short RNAs. Nature 457:1028–1032CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  6. 6.
    Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Schepeler T, Reinert JT, Ostenfeld MS et al (2008) Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Res 68:6416–6424PubMedCrossRefGoogle Scholar
  8. 8.
    Hébert SS, Horré K, Nicolaï L et al (2008) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A 105:6415–6420PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Kingwell K (2011) Cardiovascular disease: microRNA protects the heart. Nat Rev Drug Discov 10:98PubMedCrossRefGoogle Scholar
  10. 10.
    Rajwanshi VK, Koshkin AA, Wengel J (1998) Novel convenient syntheses of LNA [2.2.1]bicyclo nucleosides. Tetrahedron Lett 39:4381–4384CrossRefGoogle Scholar
  11. 11.
    Kerstens HM, Poddighe PJ, Hanselaar AG (1995) A novel in situ hybridization signal amplification method based on the deposition of biotinylated tyramine. J Histochem Cytochem 43:347–352PubMedCrossRefGoogle Scholar
  12. 12.
    Silahtaroglu AN, Nolting D, Dyrskjøt L et al (2007) Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification. Nat Protoc 2:2520–2528PubMedCrossRefGoogle Scholar
  13. 13.
    Bak M, Silahtaroglu A, Møller M et al (2008) MicroRNA expression in the adult mouse central nervous system. RNA 14:432–444PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Cellular and Molecular Medicine, Health and Medical Sciences FacultyUniversity of CopenhagenCopenhagen NDenmark

Personalised recommendations