LNA-Based In Situ Hybridization Detection of mRNAs in Embryos

  • Diana K. Darnell
  • Parker B. AntinEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1211)


In situ hybridization (ISH) in embryos allows the visualization of specific RNAs as a readout of gene expression during normal development or after experimental manipulations. ISH using short DNA probes containing locked nucleic acid nucleotides (LNAs) holds the additional advantage of allowing the detection of specific RNA splice variants or of closely related family members that differ in only short regions, creating new diagnostic and detection opportunities. Here we describe methods for using short (14–24 nt) DNA probes containing LNA nucleotides to detect moderately to highly expressed RNAs in whole chick embryos during the first 5 days of embryonic development. The protocol is easily adaptable for use with embryos of other vertebrate species.

Key words

Chicken embryo Gallus gallus In situ hybridization Locked nucleic acids LNA 



This work was supported by NIH grant P41HD064559 to PBA.


  1. 1.
    Elmen J, Zhang HY, Zuber B, Ljungberg K, Wahren B, Wahlestedt C, Liang ZC (2004) Locked nucleic acid containing antisense oligonucleotides enhance inhibition of HIV-1 genome dimerization and inhibit virus replication. FEBS Lett 578(3):285–290PubMedCrossRefGoogle Scholar
  2. 2.
    Koshkin AA, Singh SK, Nielsen P, Rajwanshi VK, Kumar R, Meldgaard M, Olsen CE, Wengel J (1998) LNA (Locked Nucleic Acids): synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine, and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 54:3607–3630CrossRefGoogle Scholar
  3. 3.
    Silahtaroglu A, Pfundheller H, Koshkin A, Tommerup N, Kauppinen S (2004) LNA-modified oligonucleotides are highly efficient as FISH probes. Cytogenet Genome Res 107(1–2):32–37PubMedCrossRefGoogle Scholar
  4. 4.
    Thomsen R (2005) Dramatically improved RNA in situ hybridization signals using LNA-modified probes. RNA 11(11):1745–1748PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Wahlestedt C, Salmi P, Good L, Kela J, Johnsson T, Hokfelt T, Broberger C, Porreca F, Lai J, Ren KK, Ossipov M, Koshkin A, Jakobsen N, Skouv J, Oerum H, Jacobsen MH, Wengel J (2000) Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc Natl Acad Sci U S A 97(10):5633–5638PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Wengel J, Petersen M, Frieden M, Troels K (2003) Chemistry of locked nucleic acids (LNA): design, synthesis, and bio-physical properties. Lett Pept Sci 10:237–253CrossRefGoogle Scholar
  7. 7.
    Darnell DK, Stanislaw S, Kaur S, Antin PB (2010) Whole mount in situ hybridization detection of mRNAs using short LNA containing DNA oligonucleotide probes. RNA 16(3):632–637PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Nieto MA, Patel K, Wilkinson DG (1996) In situ hybridization analysis of chick embryos in whole mount and tissue sections. In: Methods in cell biology, vol 15. Academic, New York, NY, pp 219–235Google Scholar
  9. 9.
    Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35(Web Server issue):W71–W74PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Kloosterman W, Wienholds E, De Bruijn E, Kauppinen S, Plasterk R (2006) In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat Methods 3(1):27–29PubMedCrossRefGoogle Scholar
  11. 11.
    Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92PubMedCrossRefGoogle Scholar
  12. 12.
    Hamburger V, Hamilton HL (1992) A series of normal stages in the development of the chick-embryo. Dev Dyn 195(4):231–272 (Reprinted from Journal of Morphology, Vol 88, 1951)PubMedCrossRefGoogle Scholar
  13. 13.
    Darnell DK, Schoenwolf GC (2000) Culture of avian embryos. Methods Mol Biol 135:31–38PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Molecular Cardiovascular Research Program, Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonUSA

Personalised recommendations