Advertisement

Zinc-Based Fixation for High-Sensitivity In Situ Hybridization: A Nonradioactive Colorimetric Method for the Detection of Rare Transcripts on Tissue Sections

  • Electra Stylianopoulou
  • George Skavdis
  • Maria GrigoriouEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1211)

Abstract

Nonradioactive colorimetric in situ hybridization (NoRISH) has been widely applied to analyze gene expression at the single-cell level. Zinc fixation is time efficient and provides excellent tissue morphology. Furthermore, it improves the preservation of the RNA, facilitating the detection of rare transcripts or the identification of expressing cells scattered within a tissue. Here we present a rapid, highly sensitive NoRISH method that uses a zinc-salt-based fixative and is especially suitable for the study of genes expressed at low levels and/or in a small number of cells within a structure.

Key words

Zinc-based fixation Colorimetric in situ hybridization Cryo-tissue sections mRNA 

References

  1. 1.
    Carter BS, Fletcher JS, Thompson RC (2010) Analysis of messenger RNA expression by in situ hybridization using RNA probes synthesized via in vitro transcription. Methods 52:322–331PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    van der Ploeg M (2000) Cytochemical nucleic acid research during the twentieth century. Eur J Histochem 44:7–42PubMedGoogle Scholar
  3. 3.
    Darby IA, Bisucci T et al (2006) In situ hybridization using cRNA probes: isotopic and nonisotopic detection methods. Methods Mol Biol 326:17–31PubMedGoogle Scholar
  4. 4.
    Higo N, Oishi T et al (1999) Quantitative non-radioactive in situ hybridization study of GAP-43 and SCG10 mRNAs in the cerebral cortex of adult and infant macaque monkeys. Cereb Cortex 9:317–320PubMedCrossRefGoogle Scholar
  5. 5.
    Larsson L, Traasdahl B, Hougaard B (1991) Quantitative non-radioactive in situ hybridization. Model studies and studies on pituitary proopiomelanocortin cells after adrenalectomy. Histochem Cell Biol 95:209–215Google Scholar
  6. 6.
    Robbins E, Baldino F et al (1991) Quantitative non-radioactive in situ hybridization of preproenkephalin mRNA with digoxigenin-labeled cRNA probes. Anat Rec 231:559–562PubMedCrossRefGoogle Scholar
  7. 7.
    Chevalier J, Yi J et al (1997) Biotin and digoxigenin as labels for light and electron microscopy in situ hybridization probes: where do we stand? J Histochem Cytochem 45:481–491PubMedCrossRefGoogle Scholar
  8. 8.
    Höfler H, Childers H et al (1986) In situ hybridization methods for the detection of somatostatin mRNA in tissue sections using antisense RNA probes. Histochem J 18:597–604CrossRefGoogle Scholar
  9. 9.
    Speel EJ, Hopman AH, Komminoth P (1999) Amplification methods to increase the sensitivity of in situ hybridization: play card(s). J Histochem Cytochem 47(3):281–288PubMedCrossRefGoogle Scholar
  10. 10.
    Adams JC (1992) Biotin amplification of biotin and horseradish peroxidase signals in histochemical stains. J Histochem Cytochem 40:1457–1463PubMedCrossRefGoogle Scholar
  11. 11.
    Roth KA, Adler K, Bobrow MN (1999) 9 enhanced tyramide signal amplification immunohistochemical detection. J Histochem Cytochem 47:1644D–1645DPubMedGoogle Scholar
  12. 12.
    Jonker A, de Boer PA et al (1997) Towards quantitative in situ hybridization. J Histochem Cytochem 45:413–423PubMedCrossRefGoogle Scholar
  13. 13.
    Acloque H, Wilkinson DG, Nieto MA (2008) In situ hybridization analysis of chick embryos in whole-mount and tissue sections. Meth Cell Biol 87:169–185CrossRefGoogle Scholar
  14. 14.
    Cinar O, Semiz O, Can A (2006) Can a microscopic survey on the efficiency of well-known routine chemical fixatives on cryosections. Acta histochem 108:487–496PubMedCrossRefGoogle Scholar
  15. 15.
    Cox ML, Schray CL et al (2006) Assessment of fixatives, fixation, and tissue processing on morphology and RNA integrity. Exp Mol Pathol 80:183–191PubMedCrossRefGoogle Scholar
  16. 16.
    Gillespie JW, Best CJ et al (2002) Evaluation of non-formalin tissue fixation for molecular profiling studies. Am J Pathol 160:444–457CrossRefGoogle Scholar
  17. 17.
    Kiernan J (2000) Formaldehyde, formalin, paraformaldehyde and glutaraldehyde: what they are and what they do. Microsc Today 1:8–12Google Scholar
  18. 18.
    Griffiths G (1993) Fixation for fine structural preservation and immunocyto-chemistry. In: Gareth (ed) fine structure immunocytochemistry (pp 26–89). Springer, BerlinGoogle Scholar
  19. 19.
    Beckstead JH (1994) A simple technique for preservation of fixation-sensitive antigens in paraffin-embedded tissues. J Histochem Cytochem 42:1127–1134PubMedCrossRefGoogle Scholar
  20. 20.
    Wester K, Asplund A et al (2003) Zinc-based fixative improves preservation of genomic DNA and proteins in histoprocessing of human tissues. Lab Invest 83:889–899PubMedCrossRefGoogle Scholar
  21. 21.
    Lykidis D, Van Noorden S et al (2007) Novel zinc-based fixative for high quality DNA, RNA and protein analysis. Nucl Acids Res 35:e85. doi: 10.1093/nar/gkm433 PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Paavilainen L, Edvinsson A et al (2010) The impact of tissue fixatives on morphology and antibody-based protein profiling in tissues and cells. J Histochem Cytochem 58(3):237–246PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Stylianopoulou E, Lykidis D et al (2012) A rapid and highly sensitive method of non radioactive colorimetric in situ hybridization for the detection of mRNA on tissue sections. PLoS One 7(3):e33898. doi: 10.1371/journal.pone.0033898 PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Schenborn ET, Mierendorf RC (1985) A novel transcription property of SP6 and T7 RNA polymerases: dependence on template structure. Nucl Acids Res 136:223–6236Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Electra Stylianopoulou
    • 1
  • George Skavdis
    • 1
  • Maria Grigoriou
    • 1
    Email author
  1. 1.Department of Molecular Biology and GeneticsDemocritus University of ThraceAlexandroupolisGreece

Personalised recommendations