Skip to main content

Methods to Assess Intestinal Stem Cell Activity in Response to Microbes in Drosophila melanogaster

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1213))

Abstract

Drosophila melanogaster presents itself as a powerful model for studying the somatic stem cells of the gut and how bacteria affect intestinal homeostasis. The Gal4/UAS/Gal80 ts system allows for temporally controlled expression of fluorescent proteins, RNAi knock-down, and other genetic constructs targeted to specific cell populations in the midgut. Similarly, FLP/FRT-mediated somatic recombinations in intestinal stem cells (ISCs) are utilized to visualize and analyze the clonal lineages of individual or populations of stem cells. Live imaging microscopy and immunofluorescence allow both qualitative and quantitative characterization of stem cell shape, proliferation, and differentiation. Here, we detail the use of these tools and techniques for studying gut performance during and following a bacterial infection in the adult fruit fly.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Demerec M (1994) Biology of Drosophila. Cold Spring Harbor Laboratory Press, New York, NY

    Google Scholar 

  2. Buchon N, Broderick NA, Lemaitre B (2013) Gut homeostasis in a microbial world: insights from Drosophila melanogaster. Nat Rev Microbiol 11:615–626

    Article  CAS  PubMed  Google Scholar 

  3. Ohlstein B, Spradling A (2006) The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439:470–474

    Article  CAS  PubMed  Google Scholar 

  4. Micchelli CA, Perrimon N (2006) Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439:475–479

    Article  CAS  PubMed  Google Scholar 

  5. Ohlstein B, Spradling A (2007) Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science 315:988–992

    Article  CAS  PubMed  Google Scholar 

  6. Buchon N, Broderick NA, Poidevin M et al (2009) Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe 5:200–211

    Article  CAS  PubMed  Google Scholar 

  7. Jiang H, Patel PH, Kohlmaier A et al (2009) Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137:1343–1355

    Article  PubMed Central  PubMed  Google Scholar 

  8. Harrison DA, Perrimon N (1993) Simple and efficient generation of marked clones in Drosophila. Curr Biol 3:424–433

    Article  CAS  PubMed  Google Scholar 

  9. Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22:451–461

    Article  CAS  PubMed  Google Scholar 

  10. Wu JS, Luo L (2006) A protocol for mosaic analysis with a repressible cell marker (MARCM) in Drosophila. Nat Protoc 1:2583–2589

    Article  CAS  PubMed  Google Scholar 

  11. Singh SR, Mishra MK, Kango-Singh M et al (2012) Generation and staining of intestinal stem cell lineage in adult midgut. Methods Mol Biol 879:47–69

    Article  CAS  PubMed  Google Scholar 

  12. Yu HH, Chen CH, Shi L et al (2009) Twin-spot MARCM to reveal the developmental origin and identity of neurons. Nat Neurosci 12:947–953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. de Navascués J, Perdigoto CN, Bian Y et al (2012) Drosophila midgut homeostasis involves neutral competition between symmetrically dividing intestinal stem cells. EMBO J 31:2473–2485

    Article  PubMed Central  PubMed  Google Scholar 

  14. Beebe K, Lee WC, Micchelli CA (2010) JAK/STAT signaling coordinates stem cell proliferation and multilineage differentiation in the Drosophila intestinal stem cell lineage. Dev Biol 338:28–37

    Article  CAS  PubMed  Google Scholar 

  15. Buchon N, Broderick NA, Chakrabarti S et al (2009) Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev 23:2333–2344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Vodovar N, Vinals M, Liehl P et al (2005) Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proc Natl Acad Sci U S A 102:11414–11419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Liehl P, Blight M, Vodovar N et al (2006) Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model. PLoS Pathog 2:e56

    Article  PubMed Central  PubMed  Google Scholar 

  18. Opota O, Vallet-Gely I, Vincentelli R et al (2011) Monalysin, a novel ß-pore-forming toxin from the Drosophila pathogen Pseudomonas entomophila, contributes to host intestinal damage and lethality. PLoS Pathog 7:e1002259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Nehme NT, Liégeois S, Kele B et al (2007) A model of bacterial intestinal infections in Drosophila melanogaster. PLoS Pathog 3:e173

    Article  PubMed Central  PubMed  Google Scholar 

  20. Cronin SJF, Nehme NT, Limmer S et al (2009) Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science 325:340–343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Chatterjee M, Ip YT (2009) Pathogenic stimulation of intestinal stem cell response in Drosophila. J Cell Physiol 220:664–671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Apidianakis Y, Pitsouli C, Perrimon N et al (2009) Synergy between bacterial infection and genetic predisposition in intestinal dysplasia. Proc Natl Acad Sci U S A 106:20883–20888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Zeng X, Chauhan C, Hou SX (2010) Characterization of midgut stem cell- and enteroblast-specific Gal4 lines in drosophila. Genesis 48:607–611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. O'Brien LE, Soliman SS, Li X et al (2011) Altered modes of stem cell division drive adaptive intestinal growth. Cell 147:603–614

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Photography for figures was performed by lab technician Aurélien Guillou. We thank our colleagues Peter Newell, David Duneau, Katia Sotelo-Troha, and Robert Houtz for comments on the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Buchon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Houtz, P.L., Buchon, N. (2014). Methods to Assess Intestinal Stem Cell Activity in Response to Microbes in Drosophila melanogaster . In: Christ, B., Oerlecke, J., Stock, P. (eds) Animal Models for Stem Cell Therapy. Methods in Molecular Biology, vol 1213. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1453-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1453-1_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1452-4

  • Online ISBN: 978-1-4939-1453-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics