Skip to main content

Selenium as a Versatile Center in Fluorescence Probe for the Redox Cycle Between HClO Oxidative Stress and H2S Repair

  • Protocol
  • First Online:
Advanced Protocols in Oxidative Stress III

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1208))

Abstract

Selenium is a biologically important trace element and acts as an active center of glutathione peroxidase (GPx). GPx is the important antioxidant enzyme to protect organisms from oxidative damage via catalyzing the reaction between ROS and glutathione (GSH). Mimicking the oxidation–reduction cycles of the versatile selenium core in GPx, we can develop fluorescence probes to detect oxidation and reduction events in living systems. The cellular redox balance between hypochloric acid (HClO) and hydrogen sulfide (H2S) has broad implications in human health and diseases, such as Alzheimer’s disease (AD). Therefore, to further investigate the roles of this redox balance and understand the pathogenesis of neurodegenerative diseases, it is necessary to detect the redox state between HClO and H2S in real time. We have developed a reversible fluorescence probe MPhSe-BOD for imaging of the redox cycle between HClO and H2S based on oxidation and reduction of selenide in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stadtman TC (1996) Selenocysteine. Annu Rev Biochem 65:83–100

    Article  PubMed  CAS  Google Scholar 

  2. Flohe L, Gunzler WA, Schock HH (1973) Glutathione peroxidase: selenoenzyme. FEBS Lett 32:132–134

    Article  PubMed  CAS  Google Scholar 

  3. Behne D, Kyriakopoulos A, Meinhold H et al (1990) Identification of type I iodothyronine 5′-deiodinase as a selenoenzyme. Biochem Biophys Res Commun 173:1143–1149

    Article  PubMed  CAS  Google Scholar 

  4. Tamura T, Stadtman TC (1996) A new selenoprotein from human lung adenocarcinoma cells: purification, properties, and thioredoxin reductase activity. Proc Natl Acad Sci U S A 93: 1006–1011

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Rotruck JT, Pope AL, Ganther HE et al (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179: 588–590

    Article  PubMed  CAS  Google Scholar 

  6. Bhabak KP, Mugesh G (2010) Functional mimics of glutathione peroxidase: bioinspired synthetic antioxidants. Acc Chem Res 43:1408–1419

    Article  PubMed  CAS  Google Scholar 

  7. Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77:598–625

    Article  PubMed  CAS  Google Scholar 

  8. Domigan NM, Charlton TS, Duncan MW et al (1995) Chlorination of tyrosyl residues in peptides by myeloperoxidase and human neutrophils. J Biol Chem 270:16542–16548

    Article  PubMed  CAS  Google Scholar 

  9. Nagy P, Ashby MT (2007) Reactive sulfur species: kinetics and mechanisms of the oxidation of cysteine by hypohalous acid to give cysteine sulfenic acid. J Am Chem Soc 129: 14082–14091

    Article  PubMed  CAS  Google Scholar 

  10. Wang R (2002) Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16:1792–1798

    Article  PubMed  CAS  Google Scholar 

  11. Lee PB, Joseph LD, Gojon G (2012) Hydrogen sulfide in biochemistry and medicine. Antioxid Redox Signal 17:119–140

    Article  Google Scholar 

  12. Whiteman M, Cheung NS, Zhu YZ et al (2005) Hydrogen sulphide: a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain? Biochem Biophys Res Commun 326:794–798

    Article  PubMed  CAS  Google Scholar 

  13. Green PS, Mendez AJ, Jacob JS et al (2004) Neuronal expression of myeloperoxidase is increased in Alzheimer’s disease. J Neurochem 90:724–733

    Article  PubMed  CAS  Google Scholar 

  14. Eto K, Asada T, Arima K et al (2002) Brain hydrogen sulfide is severely decreased in Alzheimer’s disease. Biochem Biophys Res Commun 293:1485–1488

    Article  PubMed  CAS  Google Scholar 

  15. Wang BS, Li P, Yu FB et al (2013) A reversible fluorescence probe based on Se-BODIPY for the redox cycle between HClO oxidative stress and H2S repair in living cells. Chem Commun 49:1014–1016

    Article  CAS  Google Scholar 

  16. Ashki N, Hayes KC, Bao F (2008) The peroxynitrite donor 3-morpholinosydnonimine induces reversible changes in electrophysiological properties of neurons of the guinea-pig spinal cord. Neuroscience 156:107–117

    Article  PubMed  CAS  Google Scholar 

  17. Takayama M, Yamane H, Konishi K et al (1998) Cleavage product from the NO donor NOC-5 and inner ear hair cell damage. Acta Otolaryngol Suppl 538:12–18

    PubMed  CAS  Google Scholar 

  18. Terao J, Nagao A, Park DK et al (1992) Lipid hydroperoxide assay for antioxidant activity of carotenoids. Methods Enzymol 213:454–460

    Article  CAS  Google Scholar 

  19. Kohen R, Yamamoto Y, Cundy KC et al (1988) Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc Natl Acad Sci U S A 85:3175–3179

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Albers AE, Okreglak VS, Chang CJ (2006) A FRET-based approach to ratiometric fluorescence detection of hydrogen peroxide. J Am Chem Soc 128:9640–9641

    Article  PubMed  CAS  Google Scholar 

  21. Nieminen AL, Byrne AM, Herman B et al (1997) Mitochondrial permeability transition in hepatocytes induced by t-BuOOH: NAD(P)H and reactive oxygen species. Am J Physiol 272:C1286–C1294

    PubMed  CAS  Google Scholar 

  22. Morris JC (1966) The acid ionization constant of HOCl from 5 to 35°. J Phys Chem 70: 3798–3805

    Article  CAS  Google Scholar 

  23. Halliwell B, Gutteridge JMC (1986) Oxygen free-radicals and iron in relation to biology and medicine-some problems and concepts. Arch Biochem Biophys 246:501–514

    Article  PubMed  CAS  Google Scholar 

  24. Repine JE, White JG, Clawson CC et al (1974) Influence of phorbol myristate acetate on oxygen-consumption by polymorphonuclear leukocytes. J Lab Clin Med 83:911–920

    PubMed  CAS  Google Scholar 

  25. Reich HJ, Cohen ML, Clark PS (1988) Reagents for synthesis of organoselenium compounds-diphenyl diselenide and benzeneselenenyl chloride. Org Synth 6:533–537

    Google Scholar 

  26. Briggs JR, Klosin J, Whiteker GT (2005) Synthesis of biologically active amines via rhodium-bisphosphite-catalyzed hydroaminomethylation. Org Lett 7:4795–4798

    Article  PubMed  CAS  Google Scholar 

  27. Kollmannsberger M, Rurack K, Resch-Genger U et al (1998) Ultrafast charge transfer in amino-substituted boron dipyrromethene dyes and its inhibition by cation complexation: a new design concept for highly sensitive fluorescent probes. J Phys Chem A 102: 10211–10220

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the National Science Foundation of China (21273234 and 21203192) and the National Basic Research Program of China (2013CB834604) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keli Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lou, Z., Li, P., Han, K. (2015). Selenium as a Versatile Center in Fluorescence Probe for the Redox Cycle Between HClO Oxidative Stress and H2S Repair. In: Armstrong, D. (eds) Advanced Protocols in Oxidative Stress III. Methods in Molecular Biology, vol 1208. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1441-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1441-8_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1440-1

  • Online ISBN: 978-1-4939-1441-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics