Skip to main content

A Toolkit for Clinical Statisticians to Fix Problems Based on Biomarker Measurements Subject to Instrumental Limitations: From Repeated Measurement Techniques to a Hybrid Pooled–Unpooled Design

  • Protocol
  • First Online:
Advanced Protocols in Oxidative Stress III

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1208))

Abstract

The aim of this chapter is to review and examine different methods in order to display correct and efficient statistical techniques based on complete/incomplete data subject to different sorts of measurement error (ME) problems. Instrument inaccuracies, biological variations, and/or errors in questionnaire-based self-report data can lead to significant MEs in various clinical experiments. Ignoring MEs can cause bias or inconsistency of statistical inferences. The biostatistical literature well addresses two categories of MEs: errors related to additive models and errors caused by the limit of detection (LOD). Several statistical approaches have been developed to analyze data affected by MEs, including the parametric/nonparametric likelihood methodologies, Bayesian methods, the single and multiple imputation techniques, and the repeated measurement design of experiment. We present a novel hybrid pooled–unpooled design as one of the strategies to provide correct statistical inferences when data is subject to MEs. This hybrid design and the classical techniques are compared to show the advantages and disadvantages of the considered methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carroll RJ, Spiegelman C, Lan KK, Bailey KT, Abbott RD (1984) On errors-in-variables for binary regression models. Biometrika 71:19–26

    Article  Google Scholar 

  2. Perkins NJ, Schisterman EF, Vexler A (2011) ROC curve inference for best linear combination of two biomarkers subject to limits of detection. Biom J 53:464–476

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fuller WA (1987) Measurement error models. Wiley, New York

    Book  Google Scholar 

  4. Malinovsky Y, Albert P, Schisterman EF (2012) Pooling designs for outcomes under a Gaussian random effects model. Biometrics 68:45–52

    Article  PubMed  PubMed Central  Google Scholar 

  5. Faraggi D, Reiser B, Schisterman EF (2003) ROC curve analysis for biomarkers based on pooled assessments. Stat Med 22:2515–2527

    Article  PubMed  Google Scholar 

  6. Vexler A, Tsai WM, Malinovsky Y (2011) Estimation and testing based on data subject to measurement errors: from parametric to nonparametric likelihood methods. Stat Med 31:2498–2512

    Article  PubMed  Google Scholar 

  7. Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM (2006) Measurement error in nonlinear models. Chapman & Hall, New York

    Book  Google Scholar 

  8. Schimid CH, Rosner B (1993) A Bayesian approach to logistic regression models having measurement error following a mixture distribution. Stat Med 12:1141–1153

    Article  Google Scholar 

  9. Kass RE (1993) Bayes factors in practice. J Roy Stat Soc 42:551–560

    Google Scholar 

  10. Schisterman EF, Vexler A, Ye A, Perkins NJ (2011) A combined efficient design for biomarker data subject to a limit of detection due to measuring instrument sensitivity. Ann Appl Stat 5(4):2651–2667

    Article  Google Scholar 

  11. Vexler A, Jihnhee Y, Hutson AD (2011) Likelihood testing populations modeled by autoregressive process subject to the limit of detection in applications to longitudinal biomedical data. J Appl Stat 38(7):1333–1346

    Article  Google Scholar 

  12. Gupta AK (1952) Estimation of the mean and standard deviation of a normal population from a censored sample. Biometrika 39:260–273

    Article  Google Scholar 

  13. Pepe MS (2003) The statistical evaluation of medical tests for classification and prediction. Oxford, New York, NY

    Google Scholar 

  14. Perkins NJ, Schisterman EF, Vexler A (2009) Generalized ROC curve inference for a biomarker subject to a limit of detection and measurement error. Stat Med 28(13):1841–1860

    Article  PubMed  PubMed Central  Google Scholar 

  15. Perkins NJ, Schisterman EF, Vexler A (2007) Receiver operating characteristic curve inference from a sample with a limit of detection. Am J Epidemiol 165:325–333

    Article  PubMed  Google Scholar 

  16. Schisterman EF, Vexler A, Whitcomb BW, Liu A (2006) The limitations due to exposure detection limits for regression models. Am J Epidemiol 163:374–383

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rubin DB, Schenker N (1986) Multiple imputation for interval estimation from simple random samples with ignorable nonresponse. J Am Stat Assoc 81(394):366–374

    Article  Google Scholar 

  18. Vexler A, Liu A, Schisterman EF (2006) Efficient design and analysis of biospecimens with measurements subject to detection limit. Biom J 48:780–791

    Article  PubMed  Google Scholar 

  19. Schisterman EF, Vexler A, Mumford SL, Perkins NJ (2010) Hybrid pooled-unpooled design for cost-efficient measurement of biomarkers. Stat Med 29:597–613

    PubMed  PubMed Central  Google Scholar 

  20. Vexler A, Liu S, Schisterman EF (2011) Nonparametric-likelihood inference based on cost-effectively-sampled-data. J Appl Stat 38:769–783

    Article  Google Scholar 

  21. Mumford SL, Schisterman EF, Vexler A, Liu A (2006) Pooling biospecimens and limits of detection: effects on ROC curve analysis. Biostatistics 7:585–598

    Article  PubMed  Google Scholar 

  22. Vexler A, Schisterman EF, Liu A (2008) Estimation of ROC curves based on stably distributed biomarkers subject to measurement error and pooling mixtures. Stat Med 27:280–296

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vexler A, Liu A, Schisterman EF (2010) Nonparametric deconvolution of density estimation based on observed sums. J Nonparametr Stat 22:1048–5252

    Article  Google Scholar 

  24. R Development Core Team (2012) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. ISBN 3-900051-07-0 http://www.R-project.org

  25. Searle SR, Casella G, McCullooch CE (1992) Variance components. Wiley, New York

    Book  Google Scholar 

  26. DiCiccio T, Hall P, Romano J (1989) Comparison of parametric and empirical likelihood functions. Biometrika 76:465–476

    Article  Google Scholar 

  27. Owen AB (1988) Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75:237–249

    Article  Google Scholar 

  28. Owen AB (1991) Empirical likelihood for linear models. Ann Stat 19:1725–1747

    Article  Google Scholar 

  29. Owen AB (2001) Empirical likelihood. Chapman & Hall/CRC, New York

    Book  Google Scholar 

  30. Vexler A, Liu S, Kang L, Hutson AD (2009) Modifications of the empirical likelihood interval estimation with improved coverage probabilities. Commun Stat Simulation Comput 38:2171–2183

    Article  Google Scholar 

  31. Vexler A, Yu J, Tian L, Liu S (2010) Two-sample nonparametric likelihood inference based on incomplete data with an application to a pneumonia study. Biom J 52:348–361

    Article  PubMed  Google Scholar 

  32. Vexler A, Gurevich G (2010) Empirical likelihood ratios applied to goodness-of-fit tests based on sample entropy. Comput Stat Data Anal 54:531–545

    Article  Google Scholar 

  33. Yu J, Vexler A, Tian L (2010) Analyzing incomplete data subject to a threshold using empirical likelihood methods: an application to a pneumonia risk study in an ICU setting. Biometrics 66:123–130

    Article  PubMed  Google Scholar 

  34. Kitamura Y (1997) Empirical likelihood methods with weakly dependent processes. Ann Stat 25:2084–2102

    Article  Google Scholar 

  35. Carlin B, Louis TA (2008) Bayes and empirical Bayes methods for data analysis. Chapman & Hall/CRC, New York

    Google Scholar 

  36. Liu A, Schisterman EF (2003) Comparison of diagnostic accuracy of biomarkers with pooled assessments. Biom J 45:631–644

    Article  CAS  Google Scholar 

  37. Liu A, Schisterman EF, Teoh E (2004) Sample size and power calculation in comparing diagnostic accuracy of biomarkers with pooled assessments. J Appl Stat 31:49–59

    Article  Google Scholar 

  38. Schisterman EF, Vexler A (2008) To pool or not to pool, from whether to when: applications of pooling to biospecimens subject to a limit of detection. Pediatr Perinat Epidemiol 22:486–496

    Article  Google Scholar 

  39. Harter HL, Moore AH (1967) Asymptotic variances and covariances of maximum-likelihood estimators, from censored samples, of the parameters of Weibull and gamma populations. Ann Math Stat 38:557–570

    Article  Google Scholar 

  40. Richardson DB, Ciampi A (2003) Effects of exposure measurement error when an exposure variable is constrained by a lower limit. Am J Epidemiol 157:355–363

    Article  PubMed  Google Scholar 

  41. Nie L, Chu H, Liu C, Cole SR, Vexler A, Schisterman EF (2010) Linear regression with an independent variable subject to a detection limit. Epidemiology 21(Suppl 4):S17–S24

    Article  PubMed  PubMed Central  Google Scholar 

  42. Perkins NJ, Schisterman EF, Vexler A (2013) Multivariate normally distributed biomarkers subject to limits of detection and receiver operating characteristic curve inference. Acad Radiol 20:838–846

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang Z, Albert PS (2011) Binary regression analysis with pooled exposure measurements: a regression calibration approach. Biometrics 67:636–645

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lyles RH, Tang L, Lin J, Zhang Z, Mukherjee B (2012) Likelihood-based methods for regression analysis with binary exposure status assessed by pooling. Stat Med 31:2485–2497

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mcmahan CS, Tebbs JM, Bilder CR (2013) Regression models for group testing data with pool dilution effects. Biostatistics 14:284–298

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ma CX, Vexler A, Schisterman EF, Tian L (2011) Cost-efficient designs based on linearly associated biomarkers. J Appl Stat 38:2739–2750

    Article  Google Scholar 

  47. Whitcomb BW, Perkins NJ, Zhang Z, Ye A, Lyles RH (2012) Assessment of skewed exposure in case-control studies with pooling. Stat Med 31:2461–2472

    Article  PubMed  Google Scholar 

  48. Vexler A, Liu A, Eliseeva E, Schisterman EF (2008) Maximum likelihood ratio tests for comparing the discriminatory ability of biomarkers subject to limit of detection. Biometrics 64:895–903

    Article  PubMed  PubMed Central  Google Scholar 

  49. Perkins NJ, Schisterman EF (2005) The Youden index and the optimal cut-point corrected for measurement error. Biom J 47:428–441

    Article  PubMed  Google Scholar 

  50. Delaigle A, Hall P (2012) Nonparametric regression with homogeneous group testing data. Ann Stat 40:131–158

    Article  Google Scholar 

  51. Liu A, Schisterman EF, Wu C (2006) Multistage evaluation of measurement error in a reliability study. Biometrics 62:1190–1196

    Article  PubMed  Google Scholar 

  52. Guo Y, Little RJ (2011) Regression analysis with covariates that have heteroscedastic measurement error. Stat Med 30:2278–2294

    Article  PubMed  Google Scholar 

  53. Guo Y, Little RJ, McConnell DS (2012) On using summary statistics from an external calibration sample to correct for covariate measurement error. Epidemiology 23:165–174

    Article  PubMed  Google Scholar 

  54. Albert PS, Harel O, Perkins N, Browne R (2010) Use of multiple assays subject to detection limits with regression modeling in assessing the relationship between exposure and outcome. Epidemiology 21(Suppl 4):S35–S43

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gillespie BW, Chen Q, Reichert R, Franzblau A, Hedgeman E, Lepkowski J, Adriaens P, Demond A, Luksemburg W, Garabrant DH (2010) Estimating population distributions when some data are below a limit of detection by using a reverse Kaplan-Meier estimator. Epidemiology 21:S64–S70

    Article  PubMed  Google Scholar 

  56. Herring AH (2010) Nonparametric Bayes shrinkage for assessing exposures to mixtures subject to limits of detection. Epidemiology 21(Suppl 4):S71–S76

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Vexler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Vexler, A., Tao, G., Chen, X. (2015). A Toolkit for Clinical Statisticians to Fix Problems Based on Biomarker Measurements Subject to Instrumental Limitations: From Repeated Measurement Techniques to a Hybrid Pooled–Unpooled Design. In: Armstrong, D. (eds) Advanced Protocols in Oxidative Stress III. Methods in Molecular Biology, vol 1208. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1441-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1441-8_31

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1440-1

  • Online ISBN: 978-1-4939-1441-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics