Skip to main content

Fe3+–Fe2+ Transformation Method: An Important Antioxidant Assay

  • Protocol
  • First Online:
Book cover Advanced Protocols in Oxidative Stress III

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1208))

Abstract

If we look at the multitude of varied and interesting reaction that constitute biochemistry and bioorganic chemistry, it is possible to classify a great many as either oxidation or reduction reactions. The reducing agent transfers electrons to another substance and is thus it oxidized. And, because it gives electrons, it is also called an electron donor. Electron donors can also form charge transfer complexes with electron acceptors. Reductants in biochemistry are very diverse. For example ferric ions (Fe3+) are good reducing agents. Also, different bioanalytical reduction methods are available such as Fe3+-ferrous ions (Fe2+) reduction method, ferric reducing antioxidant power reducing assay. In this section, Fe3+–Fe2+ transformation will be discussed. Recently there has been growing interest in research into the role of plant-derived antioxidants in food and human health. The beneficial influence of many foodstuffs and beverages including fruits, vegetables, tea, coffee, and cacao on human health has been recently recognized to originate from their antioxidant activity. For this purpose, the most commonly method used in vitro determination of reducing capacity of pure food constituents or plant extracts is Fe3+ reducing ability. This commonly used reducing power method is reviewed and presented in this study. Also, the general chemistry underlying this assay was clarified. Hence, this overview provides a basis and rationale for developing standardized antioxidant capacity methods for the food, nutraceutical, and dietary supplement industries. In addition, the most important advantages of this method were detected and highlighted. The chemical principles of these methods are outlined and critically discussed. The chemical principles of methods of Fe3+–Fe2+ transformation assay are outlined and critically discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davies KJ (1995) Oxidative stress: the paradox of aerobic life. Biochem Soc Symp 61:1–31

    PubMed  CAS  Google Scholar 

  2. Gülçin İ (2012) Antioxidant activity of food constituents – an overview. Archiv Toxicol 86:345–396

    Article  Google Scholar 

  3. Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A 90:7915–7922

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042

    Article  PubMed  CAS  Google Scholar 

  5. Gülçin İ (2006) Antioxidant and antiradical activities of l-Carnitine. Life Sci 78:803–811

    Article  PubMed  Google Scholar 

  6. Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine, 2nd edn. Clarendon, Oxford

    Google Scholar 

  7. Sies H (1991) Oxidative stress: from basic research to clinical application. Am J Med 91:31–39

    Article  Google Scholar 

  8. Gülçin İ (2010) Antioxidant properties of resveratrol: a structure-activity insight. Innov Food Sci Emerg 11:210–218

    Article  Google Scholar 

  9. Halliwell B, Gutteridge JMC (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Meth Enzymol 186:1–85

    Article  PubMed  CAS  Google Scholar 

  10. Diplock AT, Charleux JL, Crozier-Willi G, Kok FJ, Rice-Evans C, Roberfroid M, Stahl W, Vina-Ribes J (1998) Functional food science and defence against reactive oxidative species. Brit J Nut 80:77–112

    Article  Google Scholar 

  11. Aruoma OI (1994) Nutrition and health aspects of free radicals and antioxidants. Food Chem Toxicol 62:671–683

    Article  Google Scholar 

  12. Alho H, Leinonen J (1999) Total antioxidant activity measured by chemiluminescence methods. Method Enzymol 299:3–15

    Article  CAS  Google Scholar 

  13. Duh PD (1998) Antioxidant activity of burdock (Arctium lappa Linne): its scavenging effect on free radical and active oxygen. J Am Oil Chem Soc 75:455–465

    Article  CAS  Google Scholar 

  14. Hertog MGL, Feskens EJM, Hollman PCH, Katan MB, Kromhout D (1993) Dietary antioxidant flavonoids and risk of coronary heart disease: the Zupthen Elderly study. Lancet 342:1007–1014

    Article  PubMed  CAS  Google Scholar 

  15. Tanizawa H, Ohkawa Y, Takino Y, Ueno A, Kageyama T, Hara S (1992) Studies on natural antioxidants in citrus species. I. Determination of antioxidant activities of citrus fruits. Chem Pharm Bull 40:1940–1942

    Article  PubMed  CAS  Google Scholar 

  16. Halliwell B (1996) Oxidative stress, nutrition and health. Free Radic Res 25:57–74

    Article  PubMed  CAS  Google Scholar 

  17. Fridovich I (1986) Superoxide dismutases. Adv Enzymol 58:61–97

    PubMed  CAS  Google Scholar 

  18. Barclay LRC, Vinqvist MR, Mukai K, Itoh S, Morimoto H (1993) Chainbreaking phenolic antioxidants: steric and electronic effects in polyalkylchromanols, tocopherol analogs, hydroquinons, and superior antioxidants of polyalkylbenzochromanol and naphthofuran class. J Org Chem 58:7416–7420

    Article  CAS  Google Scholar 

  19. Tomiyama S, Sakai S, Nishiyama T, Yamada F (1993) Factors influencing the antioxidant activities of phenols by an ab initio study. Bull Chem Soc Jpn 66:299–304

    Article  CAS  Google Scholar 

  20. Bors W, Heller W, Michel C, Saran M (1990) Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Meth Enzymol 186:343–355

    Article  PubMed  CAS  Google Scholar 

  21. Gülçin İ, Beydemir S (2013) Phenolic compounds as antioxidants: carbonic anhydrase isoenzymes inhibitors. Mini Rev Med Chem 13:408–430

    PubMed  Google Scholar 

  22. Litwinienko G, Ingold KU (2003) Abnormal solvent effects on hydrogen atom abstractions. 1. The reactions of phenols with 2,2-diphenyl-l-picrylhydrazyl (DPPH) in alcohols. J Org Chem 68:3433–3438

    Article  PubMed  CAS  Google Scholar 

  23. Litwinienko G, Ingold KU (2004) Abnormal solvent effects on hydrogen atom abstraction. 2. Resolution of the curcumin antioxidant controversy. The role of sequential proton loss electron transfer. J Org Chem 69:5888–5896

    Article  PubMed  CAS  Google Scholar 

  24. Foti MC, Daquino C, Geraci C (2004) Electron-transfer reaction of cinnamic acids and their methyl esters with the DPPH· radical in alcoholic solutions. J Org Chem 69:2309–2314

    Article  PubMed  CAS  Google Scholar 

  25. Abraham MH, Grellier PL, Prior DV, Morris JJ, Taylor PJ (1990) Hydrogen bonding. Part 10. A scale of solute hydrogen-bond basicity using log K values for complexation in tetrachloromethane. J Chem Soc Perkin Trans 2:521–529

    Article  Google Scholar 

  26. Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856

    Article  PubMed  CAS  Google Scholar 

  27. Wright JS, Johnson ER, DiLabio GA (2001) Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc 123:1173–1183

    Article  PubMed  CAS  Google Scholar 

  28. Lemanska K, Szymusiak H, Tyrakowska B, Zielinski R, Soffer AEMF, Rietjens IMCM (2001) The influence of pH on the antioxidant properties and the mechanisms of antioxidant action of hydroxyflavones. Free Radic Biol Med 31:869–881

    Article  PubMed  CAS  Google Scholar 

  29. Ou B, Hampsch-Woodill M, Prior RL (2001) Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49:4619–4626

    Article  PubMed  CAS  Google Scholar 

  30. Sartor V, Henderson PT, Schuster GB (1999) Radical cation transport and reaction in RNA/DNA hybrid duplexes: effect of global structure on reactivity. J Am Chem Soc 121:11027–11033

    Article  CAS  Google Scholar 

  31. Ou B, Prior RL, Huang D (2005) The chemistry behind dietary antioxidant capacity assays. J Agric Food Chem 53:1841–1856

    Article  PubMed  Google Scholar 

  32. Prior RL, Wu XL, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302

    Article  PubMed  CAS  Google Scholar 

  33. Prior RL, Cao G (1999) In vivo total antioxidant capacity: comparison of different analytical methods. Free Radic Biol Med 27:1173–1181

    Article  PubMed  CAS  Google Scholar 

  34. Roginsky V, Lissi EA (2005) Review of methods to determine chain-breaking antioxidant activity in food. Food Chem 92:235–254

    Article  CAS  Google Scholar 

  35. Köksal E, Gülçin İ (2008) Antioxidant activity of cauliflower (Brassica oleracea L.). Turk J Agric For 32:65–78

    Google Scholar 

  36. Bursal E, Gülçin İ (2011) Polyphenol contents and in vitro antioxidant activities of lyophilized aqueous extract of kiwifruit (Actinidia deliciosa). Food Res Int 44:1482–1489

    Article  CAS  Google Scholar 

  37. Gülçin İ (2009) Antioxidant activity of l-adrenaline: an activity-structure insight. Chem Biolog Interact 179:71–80

    Article  Google Scholar 

  38. Gülçin İ, Huyut Z, Elmastaş M, Aboul-Enein HY (2010) Radical scavenging and antioxidant activity of tannic acid. Arab J Chem 3:43–53

    Article  Google Scholar 

  39. Chung YC, Chang CT, Chao WW, Lin CF, Chou ST (2002) Antioxidative activity and safety of the 50 % ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1. J Agri Food Chem 50:2454–2458

    Article  CAS  Google Scholar 

  40. Gülçin İ, Oktay M, Küfrevioğlu Öİ, Aslan A (2002) Determinations of antioxidant activity of lichen Cetraria islandica (L) Ach. J Ethnopharmacol 79:325–329

    Article  PubMed  Google Scholar 

  41. Gülçin İ (2006) Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology 217:213–220

    Article  PubMed  Google Scholar 

  42. Göçer H, Gülçin İ (2011) Caffeic acid phenethyl ester (CAPE): Correlation of structure and antioxidant properties. Int J Food Sci Nut 62:821–825

    Article  Google Scholar 

  43. Gülçin İ, Elias R, Gepdiremen A, Chea A, Topal F (2010) Antioxidant activity of bisbenzylisoquinoline alkaloids from Stephania rotunda: Cepharanthine and fangchinoline. J Enzyme Inhib Med Chem 25:44–53

    Article  PubMed  Google Scholar 

  44. Gülçin İ, Elmastaş M, Aboul-Enein HY (2012) Antioxidant activity of clove oil – a powerful antioxidant source. Arab J Chem 5:489–499

    Article  Google Scholar 

  45. Ak T, Gülçin İ (2008) Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact 174:27–37

    Article  PubMed  CAS  Google Scholar 

  46. Gülçin İ (2011) Antioxidant activity of eugenol-a structure and activity relationship study. J Med Food 14:975–985

    Article  PubMed  Google Scholar 

  47. Gülçin İ, Mshvildadze V, Gepdiremen A, Elias R (2006) Antioxidant activity of a triterpenoid glycoside isolated from the berries of Hedera colchica: 3-O-(β-d-glucopyranosyl)-hederagenin. Phytother Res 20:130–134

    Article  PubMed  Google Scholar 

  48. Gülçin İ, Mshvildadze V, Gepdiremen A, Elias R (2004) Antioxidant activity of saponins isolated from ivy: α-Hederin, hederasaponin-C, hederacolchiside-E and hederacolchiside F. Planta Med 70:561–563

    Article  PubMed  Google Scholar 

  49. Gülçin İ, Gagua N, Beydemir S, Bayram R, Bakuridze A, Gepdiremen A (2012) Apoptotic, antioxidant and antiradical effects of majdine and isomajdine from Vinca herbacea Waldst. and kit. J Enzyme Inhib Med Chem 27:587–594

    Article  PubMed  Google Scholar 

  50. Gülçin İ (2009) Antioxidant activity of l-adrenaline: an activity-structure insight. Chem Biol Interact 179:71–80

    Article  PubMed  Google Scholar 

  51. Gülçin İ (2007) Comparison of in vitro antioxidant and antiradical activities of l-tyrosine and l-Dopa. Amino Acids 32:431–438

    Article  PubMed  Google Scholar 

  52. Gülçin İ, Büyükokuroğlu ME, Oktay M, Küfrevioğlu Öİ (2002) On the in vitro antioxidant properties of melatonin. J Pineal Res 33:167–171

    Article  PubMed  Google Scholar 

  53. Gülçin İ, Mshvildadze V, Gepdiremen A, Elias R (2006) Screening of antioxidant and antiradical activity of monodesmosides and crude extract from Leontice smirnowii Tuber. Phytomedicine 13:343–351

    Article  PubMed  Google Scholar 

  54. Gülçin İ, Beydemir Ş, Alici HA, Elmastaş M, Büyükokuroğlu ME (2004) In vitro antioxidant properties of morphine. Pharmacol Res 49:59–66

    Article  PubMed  Google Scholar 

  55. Gülçin İ, Elias R, Gepdiremen A, Boyer L (2006) Antioxidant activity of lignans from fringe tree (Chionanthus virginicus L.). Eur Food Res Technol 223:759–767

    Article  Google Scholar 

  56. Gülçin İ, Alici HA, Cesur M (2005) Determination of in vitro antioxidant and radical scavenging activities of propofol. Chem Pharm Bull 53:281–285

    Article  PubMed  Google Scholar 

  57. Gülçin İ, Bursal E, Şehitoğlu HM, Bilsel M, Gören AC (2010) Polyphenol contents and antioxidant activity of lyophilized aqueous extract of propolis from Erzurum, Turkey. Food Chem Toxicol 48:2227–2238

    Article  PubMed  Google Scholar 

  58. Öztürk Sarikaya SB, Gülçin İ (2013) Radical scavenging and antioxidant capacity of serotonin. Curr Bioact Comp 9:143–152

    Article  Google Scholar 

  59. Köksal E, Gülçin İ, Öztürk Sarıkaya SB, Bursal E (2009) In vitro antioxidant activity of silymarin. J Enzyme Inhib Med Chem 24:395–405

    Article  PubMed  Google Scholar 

  60. Gülçin İ, Oktay M, Köksal E, Şerbetçi H, Beydemir Ş, Küfrevioglu ÖI (2008) Antioxidant and radical scavenging activities of uric acid. Asian J Chem 20:2079–2090

    Google Scholar 

  61. Gülçin İ, Oktay M, Kireçci E, Küfrevioğlu Öİ (2003) Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chem 83:371–382

    Article  Google Scholar 

  62. Gülçin İ, Elmastas M, Aboul-Enein HY (2007) Determination of antioxidant and radical scavenging activity of basil (Ocimum basilicum) assayed by different methodologies. Phytother Res 21:354–361

    Article  PubMed  Google Scholar 

  63. Elmastas M, Gülçin İ, Işıldak Ö, Küfrevioğlu Öİ, İbaoğlu K, Aboul-Enein HY (2006) Antioxidant capacity of bay (Laurus nobilis L.) leaves extracts. J Iran Chem Soc 3:258–266

    Article  CAS  Google Scholar 

  64. Gülçin İ (2005) The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds. Int J Food Sci Nut 56:491–499

    Article  Google Scholar 

  65. Gülçin İ, Şat İG, Beydemir Ş, Küfrevioğlu Öİ (2004) Evaluation of the in vitro antioxidant properties of extracts of broccoli (Brassica oleracea L.). Ital J Food Sci 16:17–30

    Google Scholar 

  66. Bursal E, Köksal E, Gülçin İ, Bilsel G, Gören AC (2013) Antioxidant activity and polyphenol content of cherry stem (Cerasus avium L.) determined by LC-MS/MS. Food Res Int 51:66–74

    Article  CAS  Google Scholar 

  67. Gülçin İ, Şat İG, Beydemir Ş, Elmastaş M, Küfrevioğlu Öİ (2004) Comparison of antioxidant activity of clove (Eugenia caryophylata Thunb) buds and lavender (Lavandula stoechas L.). Food Chem 87:393–400

    Article  Google Scholar 

  68. Gülçin İ, Beydemir Ş, Şat İG, Küfrevioğlu Öİ (2005) Evaluation of antioxidant activity of cornelian cherry (Cornus mas L.). Acta Aliment Hung 34:193–202

    Article  Google Scholar 

  69. Gülçin İ, Kirecci E, Akkemik E, Topal F, Hisar O (2010) Antioxidant and antimicrobial activities of an aquatic plant: Duckweed (Lemna minor L.). Turk J Biol 34:175–188

    Google Scholar 

  70. Oktay M, Gülçin İ, Küfrevioğlu Öİ (2003) Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. Lebens Wiss Technol 36:263–271

    Article  CAS  Google Scholar 

  71. Oktay M, Yıldırım A, Bilaloğlu V, Gülçin İ (2007) Antioxidant activity of different parts of ısgın (Rheum ribes L.). Asian J Chem 19:3047–3055

    CAS  Google Scholar 

  72. Bursal E, Gülçin İ (2011) Polyphenol contents and in vitro antioxidant activities of lyophilized aqueous extract of kiwifruit (Actinidia deliciosa). Food Res Int 44:1482–1489

    Article  CAS  Google Scholar 

  73. Köksal E, Bursal E, Dikici E, Tozoğlu F, Gülçin İ (2011) Antioxidant activity of Melissa officinalis leaves. J Med Plant Res 5:217–222

    Google Scholar 

  74. Şerbetçi Tohma H, Gülçin İ (2010) Antioxidant and radical scavenging activity of aerial parts and roots of Turkish liquorice (Glycyrrhiza glabra L.). Int J Food Propert 13:657–671

    Article  Google Scholar 

  75. Gülçin İ, Topal F, Oztürk Sarikaya SB, Bursal E, Gören AC, Bilsel M (2011) Polyphenol contents and antioxidant properties of medlar (Mespilus germanica L.). Rec Nat Prod 5:158–175

    Google Scholar 

  76. Gülçin İ, Tel AZ, Kirecci E (2008) Antioxidant, antimicrobial, antifungal and antiradical activities of Cyclotrichium niveum (Boiss.) Manden and Scheng. Int J Food Propert 11:450–471

    Article  Google Scholar 

  77. Gülçin İ, Küfrevioğlu Öİ, Oktay M, Büyükokuroğlu ME (2004) Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J Ethnopharmacol 90:205–215

    Article  PubMed  Google Scholar 

  78. Gülçin İ, Topal F, Çakmakçı R, Gören AC, Bilsel M, Erdoğan U (2011) Pomological features, nutritional quality, polyphenol content analysis and antioxidant properties of domesticated and three wild ecotype forms of raspberries (Rubus idaeus L.). J Food Sci 76:C585–C593

    Article  PubMed  Google Scholar 

  79. Büyükokuroğlu ME, Gülçin İ (2009) In vitro antioxidant and antiradical properties of Hippophae rhamnoides L. Pharmacogn Mag 4:189–195

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İlhami Gülçin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gülçin, İ. (2015). Fe3+–Fe2+ Transformation Method: An Important Antioxidant Assay. In: Armstrong, D. (eds) Advanced Protocols in Oxidative Stress III. Methods in Molecular Biology, vol 1208. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1441-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1441-8_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1440-1

  • Online ISBN: 978-1-4939-1441-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics