Dental Pulp Stem Cell (DPSC) Isolation, Characterization, and Differentiation

  • Federico Ferro
  • Renza Spelat
  • Chelsea S. Baheney
Part of the Methods in Molecular Biology book series (MIMB, volume 1210)

Abstract

Dental pulp stem cells (DPSC) have been proposed as an alternative to pluripotent stem cells to study multilineage differentiation in vitro and for therapeutic application. Standard culture media for isolation and expansion of stem cells includes animal sera or animal-derived matrix components (e.g., Matrigel®). However, animal-derived reagents raise significant concerns with respect to the translational ability of these cells due to the possibility of infection and/or severe immune reaction. For these reasons clinical grade substitutes to animal components are needed in order for stem cells to reach their full therapeutic potential. In this chapter we detail a method for isolation and proliferation of DPSC in a chemically defined medium containing a low percentage of human serum. We demonstrate that in this defined culture medium a 1.25 % human serum component sufficiently replaces fetal bovine serum. This method allows for isolation of a morphologically and phenotypically uniform population of DPSCs from dental pulp tissue. DPSCs represent a rapidly proliferating cell population that readily differentiates into the osteoblastic, neuronal, myocytic, and hepatocytic lineages. This multilineage capacity of these DPSCs suggests that they may have a more broad therapeutic application than lineage-restricted adult stem cell populations such as mesenchymal stem cells. Further the culture protocol presented here makes these cells more amenable to human application than current expansion techniques for other pluripotent stem cells (embryonic stem cell lines or induced pluripotent stem cells).

Key words

Dental pulp stem cells Adult stem cells Clinical grade Cell isolation Proliferation Embryonic stem cells Multipotential capacity 

References

  1. 1.
    Van der Valka J, Mellorb D, Brandsc R (2004) The humane collection of fetal bovine serum and possibilities for serum-free cell and tissue culture. Toxicol In Vitro 18:1–12CrossRefGoogle Scholar
  2. 2.
    Eloit M (1999) Risks of virus transmission associated with animal sera or substitutes and methods of control. Dev Biol Stand 99:9–16PubMedGoogle Scholar
  3. 3.
    Shah G (1999) Why do we still use serum in the production of biopharmaceuticals? Dev Biol Stand 99:17–22PubMedGoogle Scholar
  4. 4.
    Wessman SJ, Levings RL (1999) Benefits and risks due to animal serum used in cell culture production. Dev Biol Stand 99:3–8PubMedGoogle Scholar
  5. 5.
    Asher DM (1999) Bovine sera used in the manufacture of biologicals: current concerns and policies of the US. Food and drug administration regarding the transmissible spongiform encephalopathies. Dev Biol Stand 99:41–44PubMedGoogle Scholar
  6. 6.
    Denker HW (2006) Potentiality of embryonic stem cells: an ethical problem even with alternative stem cell sources. J Med Ethics 32:665–671PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Li L, Xie T (2005) Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21:605–631PubMedCrossRefGoogle Scholar
  8. 8.
    Ulloa-Montoya F, Verfaillie CM, Hu WS (2005) Culture systems for pluripotent stem cells. J Biosci Bioeng 100:12–27PubMedCrossRefGoogle Scholar
  9. 9.
    Ferro F, Spelat R, Beltrami AP, Cesselli D, Curcio F (2012) Isolation and characterization of human dental pulp derived stem cells by using media containing low human serum percentage as clinical grade substitutes for bovine serum. PLoS One 7(11):e48945PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Kerkis I, Kerkis A, Dozortsev D, Stukart-Parsons GC, Gomes Massironi SM et al (2006) Isolation and characterization of a population of immature dental pulp stem cells expressing Oct-4 and other embryonic stem cell markers. Cells Tissues Organs 184:105–116PubMedCrossRefGoogle Scholar
  11. 11.
    Mohamet L, Lea ML, Ward CM (2010) Abrogation of E-cadherin-mediated cellular aggregation allows proliferation of pluripotent mouse embryonic stem cells in shake flask bioreactors. PLoS One. doi: 10.1371/0012921 PubMedCentralPubMedGoogle Scholar
  12. 12.
    Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97:13625–13630PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Gronthos S, Brahim J, Li W (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81:531–535PubMedCrossRefGoogle Scholar
  14. 14.
    Pierdomenico L, Bonsi L, Calvitti M, Rondelli D, Arpinati M (2005) Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation 80:836–842PubMedCrossRefGoogle Scholar
  15. 15.
    Huang GT, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88:792–806PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Shi S, Robey PG, Gronthos S (2001) Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone 29:532–539PubMedCrossRefGoogle Scholar
  17. 17.
    Huang AH, Chen YK, Lin LM, Shieh TY, Chan AW et al (2008) Isolation and characterization of dental pulp stem cells from a supernumerary tooth. J Oral Pathol Med 37:571–584PubMedCrossRefGoogle Scholar
  18. 18.
    Ferro F, Spelat R, Falini G, D’Aurizio F, Falini G et al (2011) Adipose tissue-derived stem cell in vitro differentiation in a three-dimensional dental bud structure. Am J Pathol 178:2299–2310PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Ferro F, Falini G, Spelat R, D’Aurizio F, Puppato E et al (2010) Biochemical and biophysical analysis of tissue engineered bone obtained from 3D culture of bone marrow mesenchymal stem cells. Tissue Eng Part A 16:3657–3667PubMedCrossRefGoogle Scholar
  20. 20.
    Beltrami AP, Cesselli D, Bergamin N, Marcon P, Rigo S et al (2007) Multipotent cells can be generated in vitro from several adult human organs (Heart, Liver and Bone Marrow). Blood 110:3438–3446PubMedCrossRefGoogle Scholar
  21. 21.
    D’Ippolito G, Diabira S, Howard GA, Menei P, Roos BA et al (2004) Marrow isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117:2971–2981PubMedCrossRefGoogle Scholar
  22. 22.
    Liedtke S, Stephan M, Kogler G (2008) Oct4 expression revisited: potential pitfalls for data misinterpretation in stem cells. Biol Chem 389:845–850PubMedCrossRefGoogle Scholar
  23. 23.
    Cantz T, Key G, Bleidissel M, Gentile L, Han DW et al (2008) Absence of OCT4 expression in somatic tumor cell lines. Stem Cells 26:692–697PubMedCrossRefGoogle Scholar
  24. 24.
    Robey PG, Termine JD (1985) Human bone cells in vitro. Calcif Tissue Int 37:453–460PubMedCrossRefGoogle Scholar
  25. 25.
    Curcio F, Ambesi-Impiombato FS, Perrella G, Coon HG (1994) Long-term culture and functional characterization of follicular cells from adult normal human thyroids. Proc Natl Acad Sci U S A 91:9004–9008PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Hu B, Nadiri A, Bopp-Kuchler S, Perrin-Schmitt F, Wang S et al (2005) Dental epithelial histomorphogenesis in the mouse: positional information versus cell history. Arch Oral Biol 50:131–136PubMedCrossRefGoogle Scholar
  27. 27.
    Sengupta R, Billiar TR, Atkins JL, Kagan VE, Stoyanovsky DA (2009) Nitric oxide and dihydrolipoic acid modulate the activity of caspase 3 in HepG2 cells. FEBS Lett 583:3525–3530PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Tweddle DA, Malcolm AJ, Bown N, Pearson AD, Lunec J (2001) Evidence for the development of p53 mutations after cytotoxic therapy in a neuroblastoma cell line. Cancer Res 61:8–13PubMedGoogle Scholar
  29. 29.
    Ambesi-Impiombato FS, Parks LA, Coon HG (1980) Culture of hormone-dependent functional epithelial cells from rat thyroids. Proc Natl Acad Sci U S A 77:3455–3459PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Coon HG, Weiss MC (1969) A quantitative comparison of formation of spontaneous and virus-produced viable hybrids. Proc Natl Acad Sci U S A 62:852–859PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Ham RG (1965) Clonal growth of mammalian cells in a chemically defined, synthetic medium. Proc Natl Acad Sci U S A 53:288–293PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Ferro F, Spelat R, D’Aurizio F, Puppato E, Pandolfi M et al (2012) Dental pulp stem cells differentiation reveals new insights in Oct4A dynamics. PLoS One. doi: 10.1371/journal.pone.0041774 Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Federico Ferro
    • 1
  • Renza Spelat
    • 2
  • Chelsea S. Baheney
    • 1
  1. 1.Orthopaedic Trauma InstituteUniversity of California, San Francisco (UCSF) and San Francisco General Hospital (SFGH)San FranciscoUSA
  2. 2.School of Veterinary MedicineUniversity of California DavisDavisUSA

Personalised recommendations