Skip to main content

Ultra-rapid Manufacturing of Engineered Epicardial Substitute to Regenerate Cardiac Tissue Following Acute Ischemic Injury

  • Protocol
  • First Online:
Stem Cells and Tissue Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1210))

Abstract

Considering the impaired regenerative capacity of adult mammalian heart tissue, cardiovascular tissue engineering aims to create functional substitutes that can restore the structure and function of the damaged cardiac tissue. The success of cardiac regenerative therapies has been limited mainly due to poor control on the structure and properties of the tissue substitute, lack of vascularization, and immunogenicity. In this study we introduce a new approach to rapidly engineer dense biomimetic scaffolds consisting of type I collagen, to protect the heart against severe ischemic injury. Scaffold biomechanical properties are adjusted to mimic embryonic epicardium which is shown to be optimal to support cardiomyocyte contractile work. Moreover, the designed patch can serve as a delivery device for targeted, controlled release of cells or therapeutic macromolecules into the lesion area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abou Neel EA, Cheema U, Knowles JC et al (2006) Use of multiple unconfined compression for control of collagen gel scaffold density and mechanical properties. Soft Matter 2: 986–992

    Article  CAS  Google Scholar 

  2. Akins RE, Boyce RA, Madonna ML et al (1999) Cardiac organogenesis in vitro: reestablishment of three-dimensional tissue architecture by dissociated neonatal rat ventricular cells. Tissue Eng 5:103–118

    Article  CAS  PubMed  Google Scholar 

  3. Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13:27–53

    Article  CAS  PubMed  Google Scholar 

  4. Bitar M, Salih V, Brown RA, Nazhat SN (2007) Effect of multiple unconfined compression on cellular dense collagen scaffolds for bone tissue engineering. J Mater Sci Mater Med 18: 237–244

    Article  CAS  PubMed  Google Scholar 

  5. Brown RA, Wiseman M, Chuo CB et al (2005) Ultrarapid engineering of biomimetic materials and tissues: fabrication of nano- and microstructures by plastic compression. Adv Funct Mater 15:1762–1770

    Article  CAS  Google Scholar 

  6. Chen Q-Z, Harding SE, Ali NN et al (2008) Biomaterials in cardiac tissue engineering: ten years of research survey. Mater Sci Eng R Rep 59:1–37

    Article  Google Scholar 

  7. Chicatun F, Muja N, Serpooshan V et al (2013) Effect of chitosan incorporation on the consolidation process of highly hydrated collagen hydrogel scaffolds. Soft Matter. doi:10.1039/C3SM52176A

    Google Scholar 

  8. Dako (2010) Dako pathology educational guide; special stains and H & E

    Google Scholar 

  9. Dako (2009) Dako general instructions for immunohistochemical staining

    Google Scholar 

  10. Engler AJ, Carag-Krieger C, Johnson CP et al (2008) Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci 121: 3794–3802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Eschenhagen T, Fink C, Remmers U et al (1997) Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. FASEB J 11:683–694

    CAS  PubMed  Google Scholar 

  12. (2009) Stains file – paraffin processing. http://stainsfile.info/StainsFile/prepare/process/processing.htm

    Google Scholar 

  13. Jawad H, Ali NN, Lyon AR et al (2007) Myocardial tissue engineering: a review. J Tissue Eng Regen Med 1:327–342

    Article  CAS  PubMed  Google Scholar 

  14. Lee CH, Singla A, Lee Y (2001) Biomedical applications of collagen. Int J Pharm 221: 1–22

    Article  CAS  PubMed  Google Scholar 

  15. Lee MY, Cagavi Bozkulak E, Schliffke S et al (2011) High density cultures of embryoid bodies enhanced cardiac differentiation of murine embryonic stem cells. Biochem Biophys Res Commun 416:51–57

    Article  CAS  PubMed  Google Scholar 

  16. Lu T-Y, Lin B, Kim J et al (2013) Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nat Commun. doi:10.1038/ncomms3307

    Google Scholar 

  17. Mercola M, Ruiz-Lozano P, Schneider MD (2011) Cardiac muscle regeneration: lessons from development. Genes Dev 25:299–309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Oberwallner B, Brodarac A, Choi Y-H et al (2013) Preparation of cardiac extracellular matrix scaffolds by decellularization of human myocardium. J Biomed Mater Res A. doi: 10.1002/jbma.35000

    PubMed  Google Scholar 

  19. Pachence JM (1996) Collagen-based devices for soft tissue repair. J Biomed Mater Res 33: 35–40

    Article  CAS  PubMed  Google Scholar 

  20. Sachs HG, DeHaan RL (1973) Embryonic myocardial cell aggregates: volume and pulsation rate. Dev Biol 30:233–240

    Article  CAS  PubMed  Google Scholar 

  21. Serpooshan V, Julien M, Nguyen O et al (2010) Reduced hydraulic permeability of three-dimensional collagen scaffolds attenuates gel contraction and promotes the growth and differentiation of mesenchymal stem cells. Acta Biomater 6:3978–3987

    Article  CAS  PubMed  Google Scholar 

  22. Serpooshan V, Muja N, Marelli B, Nazhat SN (2011) Fibroblast contractility and growth in plastic compressed collagen gel scaffolds with microstructures correlated with hydraulic permeability. J Biomed Mater Res A 96: 609–620

    Article  PubMed  Google Scholar 

  23. Serpooshan V, Quinn TM, Muja N, Nazhat SN (2012) Hydraulic permeability of multilayered collagen gel scaffolds under plastic compression-induced unidirectional fluid flow. Acta Biomater. doi:10.1016/j.actbio.2012.08.031

    PubMed  Google Scholar 

  24. Serpooshan V, Quinn TM, Muja N, Nazhat SN (2011) Characterization and modelling of a dense lamella formed during self-compression of fibrillar collagen gels: implications for biomimetic scaffolds. Soft Matter 7:2918–2926

    Article  CAS  Google Scholar 

  25. Serpooshan V, Zhao M, Metzler SA et al (2013) The effect of bioengineered acellular collagen patch on cardiac remodeling and ventricular function post myocardial infarction. Biomaterials 34:9048–9055

    Article  CAS  PubMed  Google Scholar 

  26. Serpooshan V, Zhao M, Metzler SA, et al. (2014) Use of biomimetic 3D technology in therapeutics for heart disease. Bioengineered (in press)

    Google Scholar 

  27. Smart N, Bollini S, Dube KN et al (2011) De novo cardiomyocytes from within the activated adult heart after injury. Nature 474:640–U117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Venugopal JR, Prabhakaran MP, Mukherjee S et al (2012) Biomaterial strategies for alleviation of myocardial infarction. J R Soc Interface 9:1–19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Vunjak-Novakovic G, Tandon N, Godier A et al (2010) Challenges in cardiac tissue engineering. Tissue Eng Part B Rev 16: 169–187

    Article  PubMed Central  PubMed  Google Scholar 

  30. Zhang D, Shadrin IY, Lam J et al (2013) Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials 34:5813–5820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Zimmermann WH, Fink C, Kralisch D et al (2000) Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol Bioeng 68:106–114

    Article  CAS  PubMed  Google Scholar 

  32. Zimmermann W-H, Schneiderbanger K, Schubert P et al (2002) Tissue engineering of a differentiated cardiac muscle construct. Circ Res 90:223–230

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants HL65484 and HL086879 (to P.R.L.). V.S. was an Oak Foundation postdoctoral fellow at Stanford.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar Ruiz-Lozano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Serpooshan, V., Ruiz-Lozano, P. (2014). Ultra-rapid Manufacturing of Engineered Epicardial Substitute to Regenerate Cardiac Tissue Following Acute Ischemic Injury. In: Kioussi, C. (eds) Stem Cells and Tissue Repair. Methods in Molecular Biology, vol 1210. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1435-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1435-7_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1434-0

  • Online ISBN: 978-1-4939-1435-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics