Advertisement

Analysis of Rab GTPase–Effector Interactions by Bimolecular Fluorescence Complementation

  • Emi Ito
  • Takashi UedaEmail author
Protocol
  • 1.7k Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 1209)

Abstract

RAB GTPases interact with specific effector molecules in a spatiotemporally regulated manner to induce various downstream reactions. To clarify the overall picture of RAB GTPase functions, it is important to elucidate the cellular locale where RAB and its effectors interact. Here, we applied a bimolecular fluorescence complementation (BiFC) assay to analyze where RAB GTPase interacted with effectors in endosomal trafficking.

Key words

RAB GTPase Effectors Bimolecular fluorescent complementation Transient expression assay Confocal scanning laser microscopy 

Notes

Acknowledgement

This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, and from JST, PRESTO.

References

  1. 1.
    Fujimoto M, Ueda T (2012) Conserved and plant-unique mechanisms regulating plant post-Golgi traffic. Front Plant Sci 3:197PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Saito C, Ueda T (2009) Chapter 4: functions of RAB and SNARE proteins in plant life. Int Rev Cell Mol Biol 274:183–233PubMedCrossRefGoogle Scholar
  3. 3.
    Grosshans BL, Ortiz D, Novick P (2006) Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci U S A 103:11821–11827PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Miaczynska M, Pelkmans L, Zerial M (2004) Not just a sink: endosomes in control of signal transduction. Curr Opin Cell Biol 16:400–406PubMedCrossRefGoogle Scholar
  5. 5.
    Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–117PubMedCrossRefGoogle Scholar
  6. 6.
    Ueda T, Yamaguchi M, Uchimiya H et al (2001) Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J 20:4730–4741PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Ebine K, Fujimoto M, Okatani Y et al (2011) A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6. Nat Cell Biol 13:853–859PubMedGoogle Scholar
  8. 8.
    Ebine K, Miyakawa N, Fujimoto M et al (2012) Endosomal trafficking pathway regulated by ARA6, a RAB5 GTPase unique to plants. Small GTPases 3:23–27PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Camacho L, Smertenko AP, Pérez-Gómez J et al (2009) Arabidopsis Rab-E GTPases exhibit a novel interaction with a plasma-membrane phosphatidylinositol-4-phosphate 5-kinase. J Cell Sci 122:4383–4392PubMedCrossRefGoogle Scholar
  10. 10.
    Christoforidis S, Miaczynska M, Ashman K et al (1999) Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nat Cell Biol 1: 249–252PubMedGoogle Scholar
  11. 11.
    Horiuchi H, Lippé R, McBride HM et al (1997) A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell 90:1149–1159PubMedCrossRefGoogle Scholar
  12. 12.
    Preuss ML, Schmitz AJ, Thole JM et al (2006) A role for the RabA4b effector protein PI-4Kbeta1 in polarized expansion of root hair cells in Arabidopsis thaliana. J Cell Biol 172: 991–998PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Stenmark H, Vitale G, Ullrich O et al (1995) Rabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane fusion. Cell 83:423–432PubMedCrossRefGoogle Scholar
  14. 14.
    Grinberg AV, Hu CD, Kerppola TK (2004) Visualization of Myc/Max/Mad family dimers and the competition for dimerization in living cells. Mol Cell Biol 24:4294–4308PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Hu CD, Chinenov Y, Kerppola TK (2002) Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 9:789–798PubMedCrossRefGoogle Scholar
  16. 16.
    Hu CD, Kerppola TK (2003) Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol 21:539–545PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Weinthal D, Tzfira T (2009) Imaging protein–protein interactions in plant cells by bimolecular fluorescence complementation assay. Trends Plant Sci 14:59–63PubMedCrossRefGoogle Scholar
  18. 18.
    Goh T, Uchida W, Arakawa S et al (2007) VPS9a, the common activator for two distinct types of Rab5 GTPases, is essential for the development of Arabidopsis thaliana. Plant Cell 19:3504–3515PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Nakagawa T, Kurose T, Hino T et al (2007) Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J Biosci Bioeng 104:34–41PubMedCrossRefGoogle Scholar
  20. 20.
    Kerppola TK (2008) Bimolecular fluorescence complementation: visualization of molecular interactions in living cells. Methods Cell Biol 85:431–470PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Bracha-Drori K, Shichrur K, Katz A et al (2004) Detection of protein–protein interactions in plants using bimolecular fluorescence complementation. Plant J 40:419–427PubMedCrossRefGoogle Scholar
  22. 22.
    Citovsky V, Lee LY, Vyas S et al (2006) Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta. J Mol Biol 362:1120–1131PubMedCrossRefGoogle Scholar
  23. 23.
    Walter M, Chaban C, Schütze K et al (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438PubMedCrossRefGoogle Scholar
  24. 24.
    Hino T, Tanaka Y, Kawamukai M et al (2011) Two Sec13p homologs, AtSec13A and AtSec13B, redundantly contribute to the formation of COPII transport vesicles in Arabidopsis thaliana. Biosci Biotechnol Biochem 75:1848–1852PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Biological Sciences, Graduate School of ScienceThe University of TokyoBunkyo-kuJapan
  2. 2.Japan Science and Technology Agency (JST)PRESTOKawaguchiJapan

Personalised recommendations