Skip to main content

Analysis of Rab GTPase–Effector Interactions by Bimolecular Fluorescence Complementation

  • Protocol
  • First Online:
Plant Endosomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1209))

  • 2009 Accesses

Abstract

RAB GTPases interact with specific effector molecules in a spatiotemporally regulated manner to induce various downstream reactions. To clarify the overall picture of RAB GTPase functions, it is important to elucidate the cellular locale where RAB and its effectors interact. Here, we applied a bimolecular fluorescence complementation (BiFC) assay to analyze where RAB GTPase interacted with effectors in endosomal trafficking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fujimoto M, Ueda T (2012) Conserved and plant-unique mechanisms regulating plant post-Golgi traffic. Front Plant Sci 3:197

    Article  PubMed Central  PubMed  Google Scholar 

  2. Saito C, Ueda T (2009) Chapter 4: functions of RAB and SNARE proteins in plant life. Int Rev Cell Mol Biol 274:183–233

    Article  CAS  PubMed  Google Scholar 

  3. Grosshans BL, Ortiz D, Novick P (2006) Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci U S A 103:11821–11827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Miaczynska M, Pelkmans L, Zerial M (2004) Not just a sink: endosomes in control of signal transduction. Curr Opin Cell Biol 16:400–406

    Article  CAS  PubMed  Google Scholar 

  5. Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–117

    Article  CAS  PubMed  Google Scholar 

  6. Ueda T, Yamaguchi M, Uchimiya H et al (2001) Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J 20:4730–4741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Ebine K, Fujimoto M, Okatani Y et al (2011) A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6. Nat Cell Biol 13:853–859

    CAS  PubMed  Google Scholar 

  8. Ebine K, Miyakawa N, Fujimoto M et al (2012) Endosomal trafficking pathway regulated by ARA6, a RAB5 GTPase unique to plants. Small GTPases 3:23–27

    Article  PubMed Central  PubMed  Google Scholar 

  9. Camacho L, Smertenko AP, Pérez-Gómez J et al (2009) Arabidopsis Rab-E GTPases exhibit a novel interaction with a plasma-membrane phosphatidylinositol-4-phosphate 5-kinase. J Cell Sci 122:4383–4392

    Article  CAS  PubMed  Google Scholar 

  10. Christoforidis S, Miaczynska M, Ashman K et al (1999) Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nat Cell Biol 1: 249–252

    CAS  PubMed  Google Scholar 

  11. Horiuchi H, Lippé R, McBride HM et al (1997) A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell 90:1149–1159

    Article  CAS  PubMed  Google Scholar 

  12. Preuss ML, Schmitz AJ, Thole JM et al (2006) A role for the RabA4b effector protein PI-4Kbeta1 in polarized expansion of root hair cells in Arabidopsis thaliana. J Cell Biol 172: 991–998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Stenmark H, Vitale G, Ullrich O et al (1995) Rabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane fusion. Cell 83:423–432

    Article  CAS  PubMed  Google Scholar 

  14. Grinberg AV, Hu CD, Kerppola TK (2004) Visualization of Myc/Max/Mad family dimers and the competition for dimerization in living cells. Mol Cell Biol 24:4294–4308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Hu CD, Chinenov Y, Kerppola TK (2002) Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 9:789–798

    Article  CAS  PubMed  Google Scholar 

  16. Hu CD, Kerppola TK (2003) Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol 21:539–545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Weinthal D, Tzfira T (2009) Imaging protein–protein interactions in plant cells by bimolecular fluorescence complementation assay. Trends Plant Sci 14:59–63

    Article  CAS  PubMed  Google Scholar 

  18. Goh T, Uchida W, Arakawa S et al (2007) VPS9a, the common activator for two distinct types of Rab5 GTPases, is essential for the development of Arabidopsis thaliana. Plant Cell 19:3504–3515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Nakagawa T, Kurose T, Hino T et al (2007) Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J Biosci Bioeng 104:34–41

    Article  CAS  PubMed  Google Scholar 

  20. Kerppola TK (2008) Bimolecular fluorescence complementation: visualization of molecular interactions in living cells. Methods Cell Biol 85:431–470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Bracha-Drori K, Shichrur K, Katz A et al (2004) Detection of protein–protein interactions in plants using bimolecular fluorescence complementation. Plant J 40:419–427

    Article  CAS  PubMed  Google Scholar 

  22. Citovsky V, Lee LY, Vyas S et al (2006) Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta. J Mol Biol 362:1120–1131

    Article  CAS  PubMed  Google Scholar 

  23. Walter M, Chaban C, Schütze K et al (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438

    Article  CAS  PubMed  Google Scholar 

  24. Hino T, Tanaka Y, Kawamukai M et al (2011) Two Sec13p homologs, AtSec13A and AtSec13B, redundantly contribute to the formation of COPII transport vesicles in Arabidopsis thaliana. Biosci Biotechnol Biochem 75:1848–1852

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, and from JST, PRESTO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Ueda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ito, E., Ueda, T. (2014). Analysis of Rab GTPase–Effector Interactions by Bimolecular Fluorescence Complementation. In: Otegui, M. (eds) Plant Endosomes. Methods in Molecular Biology, vol 1209. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1420-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1420-3_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1419-7

  • Online ISBN: 978-1-4939-1420-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics