Analysis of Fluid-Phase Endocytosis in (Intact) Plant Cells

  • Vera Bandmann
  • Peter Haub
  • Tobias MeckelEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1209)


Endocytosis is a continuous process at the plasma membrane at least of all eukaryotic cells. Regardless of the molecular machinery, which drives the formation and uptake of endocytic vesicles, it is reasonable to assume that this process inevitably collects external fluid. Hence, at least for the majority of apoplastic solutes, the endocytosis of the fluid phase is likely to be an inevitable process. Due to its independence from the molecular machinery and low selectivity with respect to the cargo, it is thus perfectly suited to be used as a tracer to follow the activity of all endocytic events. Here we describe simple protocols based on fluorescence microscopy, which yield quantitative information about endocytic vesicle sizes—with sub-diffraction accuracy—as well as the size exclusion limits for these uptake routes.

Key words

Fluid-phase endocytosis Fluorescence Microscopy Confocal Single-molecule Diffraction limit Fluorescence intensity Size exclusion limit 


  1. 1.
    Li R, Liu P, Wan Y et al (2012) A membrane microdomain-associated protein, Arabidopsis Flot1, is involved in a clathrin-independent endocytic pathway and is required for seedling development. Plant Cell 24:2105–2122PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902PubMedCrossRefGoogle Scholar
  3. 3.
    Bandmann V, Homann U (2012) Clathrin-independent endocytosis contributes to uptake of glucose into BY-2 protoplasts. Plant J 70:578–584PubMedCrossRefGoogle Scholar
  4. 4.
    Wartenberg M, Hamann J, Pratsch I et al (1992) Osmotically induced fluid-phase uptake of fluorescent markers by protoplasts of Chenopodium album. Protoplasma 166:61–66CrossRefGoogle Scholar
  5. 5.
    Diekmann W, Hedrich R, Raschke K et al (1993) Osmocytosis and vacuolar fragmentation in guard-cell protoplasts – their relevance to osmotically-induced volume changes in guard-cells. J Exp Bot 44:1569–1577CrossRefGoogle Scholar
  6. 6.
    Low PS, Chandra S (1994) Endocytosis in plants. Annu Rev Plant Physiol Plant Mol Biol 45:609–631Google Scholar
  7. 7.
    Ballatori N, Hager DN, Nundy S et al (1999) Carrier-mediated uptake of lucifer yellow in skate and rat hepatocytes: a fluid-phase marker revisited. Am J Physiol Gastrointest Liver Physiol 277:G896–G904Google Scholar
  8. 8.
    Oparka K, Murant E, Wright K et al (1991) The drug probenecid inhibits the vacuolar accumulation of fluorescent anions in onion epidermal cells. J Cell Sci 99:557–563Google Scholar
  9. 9.
    Horn MA, Heinstein PF, Low PS (1992) Characterization of parameters influencing receptor-mediated endocytosis in cultured soybean cells. Plant Physiol 98:673–679PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Gall L, Stan RC, Kress A et al (2010) Fluorescent detection of fluid phase endocytosis allows for in vivo estimation of endocytic vesicle sizes in plant cells with sub-diffraction accuracy. Traffic 11:548–559PubMedCrossRefGoogle Scholar
  11. 11.
    Meckel T, Hurst AC, Thiel G et al (2004) Endocytosis against high turgor: intact guard cells of Vicia faba constitutively endocytose fluorescently labelled plasma membrane and GFP-tagged K + -channel KAT1. Plant J 39:182–193PubMedCrossRefGoogle Scholar
  12. 12.
    Meckel T, Hurst AC, Thiel G et al (2005) Guard cells undergo constitutive and pressure-driven membrane turnover. Protoplasma 226:23–29PubMedCrossRefGoogle Scholar
  13. 13.
    Bolte S, Talbot C, Boutte Y et al (2004) FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J Microsc 214:159–173PubMedCrossRefGoogle Scholar
  14. 14.
    Etxeberria E, Gonzalez P, Baroja-Fernandez E et al (2006) Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: evidence for the distribution of solutes to different intracellular compartments. Plant Signal Behav 4:196–200CrossRefGoogle Scholar
  15. 15.
    Lindhout BI, Meckel T, van der Zaal BJ (2010) Zinc finger-mediated live cell imaging in Arabidopsis roots. Methods Mol Biol 649:383–398PubMedCrossRefGoogle Scholar
  16. 16.
    Lindhout BI, Fransz P, Tessadori F, Meckel T et al (2007) Live cell imaging of repetitive DNA sequences via GFP-tagged polydactyl zinc finger proteins. Nucleic Acids Res 35(16):e107PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Langhans M, Meckel T, Kress A et al (2012) ERES (ER exit sites) and the “secretory unit concept”. J Microsc 247:48–59PubMedCrossRefGoogle Scholar
  18. 18.
    Homann U, Thiel G (1999) Unitary exocytotic and endocytotic events in guard-cell protoplasts during osmotically driven volume changes. FEBS Lett 460:495–499PubMedCrossRefGoogle Scholar
  19. 19.
    Thiel G, Kreft M, Zorec R (2008) Unitary exocytotic and endocytotic events in Zea mays L. coleoptile protoplasts. Plant J 13:117–120CrossRefGoogle Scholar
  20. 20.
    Weise R, Kreft M, Homann U et al (2000) Transient and permanent fusion of vesicles in Zea mays coleoptile protoplasts measured in the cell-attached configuration. J Membr Biol 174:15–20PubMedCrossRefGoogle Scholar
  21. 21.
    Bandmann V, Kreft M, Homann U (2010) Modes of exocytotic and endocytotic events in tobacco BY-2 protoplasts. Mol Plant 4:241–251PubMedCrossRefGoogle Scholar
  22. 22.
    Edelstein A, Amodaj N, Hoover K et al (2010) Computer control of microscopes using μManager. Curr Protoc Mol Biol Chapter:Unit14.20Google Scholar
  23. 23.
    Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682PubMedCrossRefGoogle Scholar
  24. 24.
    Bandmann V, Müller JD, Köhler T (2012) Uptake of fluorescent nano beads into BY2-cells involves clathrin-dependent and clathrin-independent endocytosis. FEBS Lett 586:3626–3632PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Plant Cell Biology, Department of BiologyINM-Leibniz-Institute for New Materials66123 SaarbrückenGermany
  2. 2.DIPsystems.deAltlussheimGermany
  3. 3.Membrane Dynamics, Department of BiologyTechnische Universität Darmstadt65287 DarmstadtGermany

Personalised recommendations