Skip to main content

Analysis of Fluid-Phase Endocytosis in (Intact) Plant Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1209))

Abstract

Endocytosis is a continuous process at the plasma membrane at least of all eukaryotic cells. Regardless of the molecular machinery, which drives the formation and uptake of endocytic vesicles, it is reasonable to assume that this process inevitably collects external fluid. Hence, at least for the majority of apoplastic solutes, the endocytosis of the fluid phase is likely to be an inevitable process. Due to its independence from the molecular machinery and low selectivity with respect to the cargo, it is thus perfectly suited to be used as a tracer to follow the activity of all endocytic events. Here we describe simple protocols based on fluorescence microscopy, which yield quantitative information about endocytic vesicle sizes—with sub-diffraction accuracy—as well as the size exclusion limits for these uptake routes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Li R, Liu P, Wan Y et al (2012) A membrane microdomain-associated protein, Arabidopsis Flot1, is involved in a clathrin-independent endocytic pathway and is required for seedling development. Plant Cell 24:2105–2122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902

    Article  CAS  PubMed  Google Scholar 

  3. Bandmann V, Homann U (2012) Clathrin-independent endocytosis contributes to uptake of glucose into BY-2 protoplasts. Plant J 70:578–584

    Article  CAS  PubMed  Google Scholar 

  4. Wartenberg M, Hamann J, Pratsch I et al (1992) Osmotically induced fluid-phase uptake of fluorescent markers by protoplasts of Chenopodium album. Protoplasma 166:61–66

    Article  Google Scholar 

  5. Diekmann W, Hedrich R, Raschke K et al (1993) Osmocytosis and vacuolar fragmentation in guard-cell protoplasts – their relevance to osmotically-induced volume changes in guard-cells. J Exp Bot 44:1569–1577

    Article  Google Scholar 

  6. Low PS, Chandra S (1994) Endocytosis in plants. Annu Rev Plant Physiol Plant Mol Biol 45:609–631

    CAS  Google Scholar 

  7. Ballatori N, Hager DN, Nundy S et al (1999) Carrier-mediated uptake of lucifer yellow in skate and rat hepatocytes: a fluid-phase marker revisited. Am J Physiol Gastrointest Liver Physiol 277:G896–G904

    CAS  Google Scholar 

  8. Oparka K, Murant E, Wright K et al (1991) The drug probenecid inhibits the vacuolar accumulation of fluorescent anions in onion epidermal cells. J Cell Sci 99:557–563

    CAS  Google Scholar 

  9. Horn MA, Heinstein PF, Low PS (1992) Characterization of parameters influencing receptor-mediated endocytosis in cultured soybean cells. Plant Physiol 98:673–679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Gall L, Stan RC, Kress A et al (2010) Fluorescent detection of fluid phase endocytosis allows for in vivo estimation of endocytic vesicle sizes in plant cells with sub-diffraction accuracy. Traffic 11:548–559

    Article  CAS  PubMed  Google Scholar 

  11. Meckel T, Hurst AC, Thiel G et al (2004) Endocytosis against high turgor: intact guard cells of Vicia faba constitutively endocytose fluorescently labelled plasma membrane and GFP-tagged K + -channel KAT1. Plant J 39:182–193

    Article  CAS  PubMed  Google Scholar 

  12. Meckel T, Hurst AC, Thiel G et al (2005) Guard cells undergo constitutive and pressure-driven membrane turnover. Protoplasma 226:23–29

    Article  CAS  PubMed  Google Scholar 

  13. Bolte S, Talbot C, Boutte Y et al (2004) FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J Microsc 214:159–173

    Article  CAS  PubMed  Google Scholar 

  14. Etxeberria E, Gonzalez P, Baroja-Fernandez E et al (2006) Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: evidence for the distribution of solutes to different intracellular compartments. Plant Signal Behav 4:196–200

    Article  Google Scholar 

  15. Lindhout BI, Meckel T, van der Zaal BJ (2010) Zinc finger-mediated live cell imaging in Arabidopsis roots. Methods Mol Biol 649:383–398

    Article  CAS  PubMed  Google Scholar 

  16. Lindhout BI, Fransz P, Tessadori F, Meckel T et al (2007) Live cell imaging of repetitive DNA sequences via GFP-tagged polydactyl zinc finger proteins. Nucleic Acids Res 35(16):e107

    Article  PubMed Central  PubMed  Google Scholar 

  17. Langhans M, Meckel T, Kress A et al (2012) ERES (ER exit sites) and the “secretory unit concept”. J Microsc 247:48–59

    Article  CAS  PubMed  Google Scholar 

  18. Homann U, Thiel G (1999) Unitary exocytotic and endocytotic events in guard-cell protoplasts during osmotically driven volume changes. FEBS Lett 460:495–499

    Article  CAS  PubMed  Google Scholar 

  19. Thiel G, Kreft M, Zorec R (2008) Unitary exocytotic and endocytotic events in Zea mays L. coleoptile protoplasts. Plant J 13:117–120

    Article  Google Scholar 

  20. Weise R, Kreft M, Homann U et al (2000) Transient and permanent fusion of vesicles in Zea mays coleoptile protoplasts measured in the cell-attached configuration. J Membr Biol 174:15–20

    Article  CAS  PubMed  Google Scholar 

  21. Bandmann V, Kreft M, Homann U (2010) Modes of exocytotic and endocytotic events in tobacco BY-2 protoplasts. Mol Plant 4:241–251

    Article  PubMed  Google Scholar 

  22. Edelstein A, Amodaj N, Hoover K et al (2010) Computer control of microscopes using μManager. Curr Protoc Mol Biol Chapter:Unit14.20

    Google Scholar 

  23. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  24. Bandmann V, Müller JD, Köhler T (2012) Uptake of fluorescent nano beads into BY2-cells involves clathrin-dependent and clathrin-independent endocytosis. FEBS Lett 586:3626–3632

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Meckel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bandmann, V., Haub, P., Meckel, T. (2014). Analysis of Fluid-Phase Endocytosis in (Intact) Plant Cells. In: Otegui, M. (eds) Plant Endosomes. Methods in Molecular Biology, vol 1209. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1420-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1420-3_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1419-7

  • Online ISBN: 978-1-4939-1420-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics