Sterol Dynamics During Endocytic Trafficking in Arabidopsis

  • Thomas Stanislas
  • Markus GrebeEmail author
  • Yohann Boutté
Part of the Methods in Molecular Biology book series (MIMB, volume 1209)


Sterols are lipids found in membranes of eukaryotic cells. Functions of sterols have been demonstrated for various cellular processes including endocytic trafficking in animal, fungal, and plant cells. The ability to visualize sterols at the subcellular level is crucial to understand sterol distribution and function during endocytic trafficking. In plant cells, the polyene antibiotic filipin is the most extensively used tool for the specific detection of fluorescently labeled 3-β-hydroxysterols in situ. Filipin can to some extent be used to track sterol internalization in live cells, but this application is limited, due to the inhibitory effects filipin exerts on sterol-dependent endocytosis. Nevertheless, filipin-sterol labeling can be performed on aldehyde-fixed cells which allows for sterol detection in endocytic compartments. This approach can combine studies correlating sterol distribution with experimental manipulations of endocytic trafficking pathways. Here, we describe step-by-step protocols and troubleshooting for procedures on live and fixed cells to visualize sterols during endocytic trafficking. We also provide a detailed discussion of advantages and limitations of both methods. Moreover, we illustrate the use of the endocytic recycling inhibitor brefeldin A and a genetically modified version of one of its target molecules for studying endocytic sterol trafficking.

Key words

Sterol labeling Endocytosis Protocols Immunofluorescence Confocal microscopy Arabidopsis root Endocytic trafficking mutants 



We gratefully acknowledge David Ehrhardt (Stanford, USA) for making available LTI6a-GFP seeds; Gerd Jürgens (Tübingen, Germany) for providing anti-KNOLLE serum and GNOM-GFP, GNOMsens-myc, and GNOMres-myc seeds; Ben Scheres (Utrecht, the Netherlands) for supplying ARF1-EGFP seeds; Ian Moore (Oxford, UK) for sharing RAB-A2a-EYFP seeds; Karin Schumacher (Heidelberg, Germany) for making available VHA-a1-GFP seeds; and Takashi Ueda (Tokyo, Japan) for providing ARA6-GFP (RAB-F1-GFP) seeds.


  1. 1.
    Keller P, Simons K (1998) Cholesterol is required for surface transport of influenza virus hemagglutinin. J Cell Biol 140:1357–1367PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Manes S, Mira E, Gomez-Mouton C et al (1999) Membrane raft microdomains mediate front-rear polarity in migrating cells. EMBO J 18:6211–6220PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Simons K, Ikonen E (2000) How cells handle cholesterol. Science 290:1721–1726PubMedCrossRefGoogle Scholar
  4. 4.
    Bagnat M, Simons K (2002) Lipid rafts in protein sorting and cell polarity in budding yeast Saccharomyces cerevisiae. Biol Chem 383:1475–1480PubMedCrossRefGoogle Scholar
  5. 5.
    Wachtler V, Rajagopalan S, Balasubramanian MK (2003) Sterol-rich plasma membrane domains in the fission yeast Schizosaccharomyces pombe. J Cell Sci 116:867–874PubMedCrossRefGoogle Scholar
  6. 6.
    Willemsen V, Friml J, Grebe M et al (2003) Cell polarity and PIN protein positioning in Arabidopsis require STEROL METHYLTRANSFERASE1 function. Plant Cell 15:612–625PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Takeda T, Kawate T, Chang F (2004) Organization of a sterol-rich membrane domain by cdc15p during cytokinesis in fission yeast. Nat Cell Biol 6:1142–1144PubMedCrossRefGoogle Scholar
  8. 8.
    Ng MM, Chang F, Burgess DR (2005) Movement of membrane domains and requirement of membrane signaling molecules for cytokinesis. Dev Cell 9:781–790PubMedCrossRefGoogle Scholar
  9. 9.
    Men S, Boutte Y, Ikeda Y et al (2008) Sterol-dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity. Nat Cell Biol 10:237–244PubMedCrossRefGoogle Scholar
  10. 10.
    Takeshita N, Higashitsuji Y, Konzack S et al (2008) Apical sterol-rich membranes are essential for localizing cell end markers that determine growth directionality in the filamentous fungus Aspergillus nidulans. Mol Biol Cell 19:339–351PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Boutte Y, Frescatada-Rosa M, Men S et al (2010) Endocytosis restricts Arabidopsis KNOLLE syntaxin to the cell division plane during late cytokinesis. EMBO J 29:546–558PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Vidricaire G, Tremblay MJ (2007) A clathrin, caveolae, and dynamin-independent endocytic pathway requiring free membrane cholesterol drives HIV-1 internalization and infection in polarized trophoblastic cells. J Mol Biol 368:1267–1283PubMedCrossRefGoogle Scholar
  13. 13.
    Codlin S, Haines RL, Mole SE (2008) btn1 affects endocytosis, polarization of sterol-rich membrane domains and polarized growth in Schizosaccharomyces pombe. Traffic 9:936–950PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Pan J, Fujioka S, Peng J et al (2009) The E3 ubiquitin ligase SCFTIR1/AFB and membrane sterols play key roles in auxin regulation of endocytosis, recycling, and plasma membrane accumulation of the auxin efflux transporter PIN2 in Arabidopsis thaliana. Plant Cell 21:568–580PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Grebe M, Xu J, Mobius W et al (2003) Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Curr Biol 13:1378–1387PubMedCrossRefGoogle Scholar
  16. 16.
    Mukherjee S, Zha X, Tabas I et al (1998) Cholesterol distribution in living cells: fluorescence imaging using dehydroergosterol as a fluorescent cholesterol analog. Biophys J 75:1915–1925PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Wüstner D, Mondal M, Tabas I et al (2005) Direct observation of rapid internalization and intracellular transport of sterol by macrophage foam cells. Traffic 6:396–412PubMedCrossRefGoogle Scholar
  18. 18.
    Wüstner D, Faergeman NJ (2008) Spatiotemporal analysis of endocytosis and membrane distribution of fluorescent sterols in living cells. Histochem Cell Biol 130:891–908PubMedCrossRefGoogle Scholar
  19. 19.
    Geldner N, Friml J, Stierhof YD et al (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428PubMedCrossRefGoogle Scholar
  20. 20.
    Boutte Y, Men S, Grebe M (2011) Fluorescent in situ visualization of sterols in Arabidopsis roots. Nat Protocols 6:446–456CrossRefGoogle Scholar
  21. 21.
    Wustner D (2007) Fluorescent sterols as tools in membrane biophysics and cell biology. Chem Phys Lipids 146:1–25PubMedCrossRefGoogle Scholar
  22. 22.
    Holtta-Vuori M, Uronen RL, Repakova J et al (2008) BODIPY-cholesterol: a new tool to visualize sterol trafficking in living cells and organisms. Traffic 9:1839–1849PubMedCrossRefGoogle Scholar
  23. 23.
    Gimpl G (2010) Cholesterol-protein interaction: methods and cholesterol reporter molecules. Subcell Biochem 51:1–45PubMedCrossRefGoogle Scholar
  24. 24.
    Maxfield FR, Wustner D (2012) Analysis of cholesterol trafficking with fluorescent probes. Methods Cell Biol 108:367–393PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Blachutzik JO, Demir F, Kreuzer I et al (2012) Methods of staining and visualization of sphingolipid enriched and non-enriched plasma membrane regions of Arabidopsis thaliana with fluorescent dyes and lipid analogues. Plant Meth 8:28CrossRefGoogle Scholar
  26. 26.
    Benveniste P (2004) Biosynthesis and accumulation of sterols. Annu Rev Plant Biol 55:429–457PubMedCrossRefGoogle Scholar
  27. 27.
    Hartmann M-A (2004) Sterol metabolism and functions in higher plants. In: Daum G (ed) Lipid metabolism and membrane biogenesis. Springer, Berlin, pp 183–211Google Scholar
  28. 28.
    Klima A, Foissner I (2008) FM dyes label sterol-rich plasma membrane domains and are internalized independently of the cytoskeleton in characean internodal cells. Plant Cell Physiol 49:1508–1521PubMedGoogle Scholar
  29. 29.
    Bonneau L, Gerbeau-Pissot P, Thomas D et al (2010) Plasma membrane sterol complexation, generated by filipin, triggers signaling responses in tobacco cells. Biochim Biophys Acta 1798:2150–2159PubMedCrossRefGoogle Scholar
  30. 30.
    Ovecka M, Berson T, Beck M et al (2010) Structural sterols are involved in both the initiation and tip growth of root hairs in Arabidopsis thaliana. Plant Cell 22:2999–3019PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Tjellstrom H, Hellgren LI, Wieslander A et al (2010) Lipid asymmetry in plant plasma membranes: phosphate deficiency-induced phospholipid replacement is restricted to the cytosolic leaflet. FASEB J 24:1128–1138PubMedCrossRefGoogle Scholar
  32. 32.
    Kleine-Vehn J, Dhonukshe P, Swarup R et al (2006) Subcellular trafficking of the Arabidopsis auxin influx carrier AUX1 uses a novel pathway distinct from PIN1. Plant Cell 18:3171–3181PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Steinmann T, Geldner N, Grebe M et al (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286:316–318PubMedCrossRefGoogle Scholar
  34. 34.
    Geldner N, Anders N, Wolters H et al (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230PubMedCrossRefGoogle Scholar
  35. 35.
    Richter S, Anders N, Wolters H et al (2010) Role of the GNOM gene in Arabidopsis apical-basal patterning – from mutant phenotype to cellular mechanism of protein action. Eur J Cell Biol 89:138–144PubMedCrossRefGoogle Scholar
  36. 36.
    Cutler SR, Ehrhardt DW (2002) Polarized cytokinesis in vacuolate cells of Arabidopsis. Proc Natl Acad Sci U S A 99:2812–2817PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Xu J, Scheres B (2005) Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 function in epidermal cell polarity. Plant Cell 17:525–536PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Chow CM, Neto H, Foucart C et al (2008) Rab-A2 and Rab-A3 GTPases define a trans-golgi endosomal membrane domain in Arabidopsis that contributes substantially to the cell plate. Plant Cell 20:101–123PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Dettmer J, Hong-Hermesdorf A, Stierhof YD et al (2006) Vacuolar H + -ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18:715–730PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Goh T, Uchida W, Arakawa S et al (2007) VPS9a, the common activator for two distinct types of Rab5 GTPases, is essential for the development of Arabidopsis thaliana. Plant Cell 19:3504–3515PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Lauber MH, Waizenegger I, Steinmann T et al (1997) The Arabidopsis KNOLLE protein is a cytokinesis-specific syntaxin. J Cell Biol 139:1485–1493PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Castanho MA, Prieto MJ (1992) Fluorescence study of the macrolide pentaene antibiotic filipin in aqueous solution and in a model system of membranes. Eur J Biochem 207:125–134PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Thomas Stanislas
    • 1
  • Markus Grebe
    • 1
    • 2
    Email author
  • Yohann Boutté
    • 3
  1. 1.Department of Plant Physiology, Umeå Plant Science Centre (UPSC)Umeå UniversityUmeåSweden
  2. 2.Institut für Biochemie und Biologie, PflanzenphysiologieUniversität PotsdamPotsdam-GolmGermany
  3. 3.Membrane Biogenesis LaboratoryUMR 5200 CNRS-Université Bordeaux Segalen Bâtiment A3, INRA Bordeaux Aquitaine BP81Villenave d’Ornon CédexFrance

Personalised recommendations