Analysis of Global Ubiquitylation and Ubiquitin-Binding Domains Involved in Endosomal Trafficking

  • Kamila Kalinowska
  • Erika IsonoEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1209)


Ubiquitylation is a reversible posttranslational modification that regulates various cellular pathways. Ubiquitylation of a plasma membrane protein was shown to serve as a signal for endocytosis of plasma membrane proteins in yeast and mammals as well as in plants. As more and more plant plasma membrane proteins are reported to be regulated through their ubiquitylation status, methods to analyze ubiquitylation and ubiquitin binding would be useful for the characterization of proteins involved in endocytosis of ubiquitylated cargo proteins.

Key words

Ubiquitin K48 K63 Western blot Binding assay 


  1. 1.
    Kerscher O, Felberbaum R, Hochstrasser M (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22:159–180PubMedCrossRefGoogle Scholar
  2. 2.
    Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137(1):133–145PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Varadan R, Assfalg M, Haririnia A, Raasi S, Pickart C, Fushman D (2004) Solution conformation of Lys63-linked di-ubiquitin chain provides clues to functional diversity of polyubiquitin signaling. J Biol Chem 279(8):7055–7063PubMedCrossRefGoogle Scholar
  4. 4.
    Cook WJ, Jeffrey LC, Carson M, Chen Z, Pickart CM (1992) Structure of a diubiquitin conjugate and a model for interaction with ubiquitin conjugating enzyme (E2). J Biol Chem 267(23):16467–16471PubMedGoogle Scholar
  5. 5.
    Chau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ, Gonda DK, Varshavsky A (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243(4898):1576–1583PubMedCrossRefGoogle Scholar
  6. 6.
    Spence J, Sadis S, Haas AL, Finley D (1995) A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol Cell Biol 15(3):1265–1273PubMedCentralPubMedGoogle Scholar
  7. 7.
    Galan JM, Haguenauer-Tsapis R (1997) Ubiquitin lys63 is involved in ubiquitination of a yeast plasma membrane protein. EMBO J 16(19):5847–5854PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Shih SC, Sloper-Mould KE, Hicke L (2000) Monoubiquitin carries a novel internalization signal that is appended to activated receptors. EMBO J 19(2):187–198PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Winter V, Hauser MT (2006) Exploring the ESCRTing machinery in eukaryotes. Trends Plant Sci 11(3):115–123PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    McCullough J, Clague MJ, Urbe S (2004) AMSH is an endosome-associated ubiquitin isopeptidase. J Cell Biol 166(4):487–492PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Isono E, Katsiarimpa A, Muller IK, Anzenberger F, Stierhof YD, Geldner N, Chory J, Schwechheimer C (2010) The deubiquitinating enzyme AMSH3 is required for intracellular trafficking and vacuole biogenesis in Arabidopsis thaliana. Plant Cell 22(6):1826–1837PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    McCullough J, Row PE, Lorenzo O, Doherty M, Beynon R, Clague MJ, Urbe S (2006) Activation of the endosome-associated ubiquitin isopeptidase AMSH by STAM, a component of the multivesicular body-sorting machinery. Curr Biol 16(2):160–165PubMedCrossRefGoogle Scholar
  13. 13.
    Katsiarimpa A, Anzenberger F, Schlager N, Neubert S, Hauser MT, Schwechheimer C, Isono E (2011) The Arabidopsis deubiquitinating enzyme AMSH3 interacts with ESCRT-III subunits and regulates their localization. Plant Cell 23(8):3026–3040PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Katsiarimpa A, Kalinowska K, Anzenberger F, Weis C, Ostertag M, Tsutsumi C, Schwechheimer C, Brunner F, Huckelhoven R, Isono E (2013) The deubiquitinating enzyme AMSH1 and the ESCRT-III subunit VPS2.1 are required for autophagic degradation in Arabidopsis. Plant Cell 25(6):2236–2252PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Kirkpatrick DS, Denison C, Gygi SP (2005) Weighing in on ubiquitin: the expanding role of mass-spectrometry-based proteomics. Nat Cell Biol 7(8):750–757PubMedCentralPubMedGoogle Scholar
  16. 16.
    Newton K, Matsumoto ML, Wertz IE, Kirkpatrick DS, Lill JR, Tan J, Dugger D, Gordon N, Sidhu SS, Fellouse FA, Komuves L, French DM, Ferrando RE, Lam C, Compaan D, Yu C, Bosanac I, Hymowitz SG, Kelley RF, Dixit VM (2008) Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell 134(4):668–678PubMedCrossRefGoogle Scholar
  17. 17.
    Dikic I, Wakatsuki S, Walters KJ (2009) Ubiquitin-binding domains—from structures to functions. Nat Rev Mol Cell Biol 10(10):659–671PubMedCrossRefGoogle Scholar
  18. 18.
    Hjerpe R, Aillet F, Lopitz-Otsoa F, Lang V, England P, Rodriguez MS (2009) Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities. EMBO Rep 10(11):1250–1258PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Kim DY, Scalf M, Smith LM, Vierstra RD (2013) Advanced proteomic analyses yield a deep catalog of ubiquitylation targets in Arabidopsis. Plant Cell 25(5):1523–1540PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Plant Systems BiologyTechnische Universität MünchenFreisingGermany

Personalised recommendations