Advertisement

Galectins pp 115-131 | Cite as

Examining Galectin Binding Specificity Using Glycan Microarrays

  • Connie M. Arthur
  • Lílian Cataldi Rodrigues
  • Marcelo Dias Baruffi
  • Harold C. Sullivan
  • Jamie Heimburg-Molinaro
  • Dave F. Smith
  • Richard D. Cummings
  • Sean R. StowellEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1207)

Abstract

Glycan binding proteins (GBPs) possess the unique ability to regulate a wide variety of biological processes through interactions with highly modifiable cell surface glycans. While many studies demonstrate the impact of glycan modification on GBP recognition and activity, the relative contribution of subtle changes in glycan structure on GBP binding can be difficult to define. To overcome limitations in the analysis of GBP-glycan interactions, recent studies utilized glycan microarray platforms containing hundreds of structurally defined glycans. These studies not only provided important information regarding GBP–glycan interactions, but have also resulted in significant insight into the binding specificity and biological activity of the galectin family. We will describe the methods used when employing glycan microarray platforms to examine galectin–glycan binding specificity and function.

Key words

Glycan binding protein (GBP) Galectin Glycan microarray GBP–glycan interactions 

Notes

Acknowledgments

This work was supported in part by grants from the National Blood Foundation, American Society of Hematology and Hemophilia of Georgia to S.R.S.

References

  1. 1.
    Cerliani JP, Stowell SR, Mascanfroni ID, Arthur CM, Cummings RD, Rabinovich GA (2011) Expanding the universe of cytokines and pattern recognition receptors: galectins and glycans in innate immunity. J Clin Immunol 31(1):10–21. doi: 10.1007/s10875-010-9494-2 PubMedCrossRefGoogle Scholar
  2. 2.
    Cooper DN, Barondes SH (1999) God must love galectins; he made so many of them. Glycobiology 9(10):979–984PubMedCrossRefGoogle Scholar
  3. 3.
    Brewer CF, Miceli MC, Baum LG (2002) Clusters, bundles, arrays and lattices: novel mechanisms for lectin-saccharide-mediated cellular interactions. Curr Opin Struct Biol 12(5):616–623PubMedCrossRefGoogle Scholar
  4. 4.
    Liu FT, Patterson RJ, Wang JL (2002) Intracellular functions of galectins. Biochim Biophys Acta 1572(2–3):263–273PubMedCrossRefGoogle Scholar
  5. 5.
    Dias-Baruffi M, Stowell SR, Song SC, Arthur CM, Cho M, Rodrigues LC, Montes MA, Rossi MA, James JA, McEver RP, Cummings RD (2009) Differential expression of immunomodulatory galectin-1 in peripheral leukocytes and adult tissues and its cytosolic organization in striated muscle. Glycobiology 20(5):507–520CrossRefGoogle Scholar
  6. 6.
    Nakahara S, Raz A (2006) On the role of galectins in signal transduction. Methods Enzymol 417:273–289. doi: 10.1016/S0076-6879(06)17019-6 PubMedCrossRefGoogle Scholar
  7. 7.
    van Kooyk Y, Rabinovich GA (2008) Protein-glycan interactions in the control of innate and adaptive immune responses. Nat Immunol 9(6):593–601. doi: 10.1038/ni.f.203 PubMedCrossRefGoogle Scholar
  8. 8.
    Cerri DG, Rodrigues LC, Stowell SR, Araujo DD, Coelho MC, Oliveira SR, Bizario JC, Cummings RD, Dias-Baruffi M, Costa MC (2008) Degeneration of dystrophic or injured skeletal muscles induces high expression of galectin-1. Glycobiology 18(11):842–850PubMedCrossRefGoogle Scholar
  9. 9.
    Leffler H, Carlsson S, Hedlund M, Qian Y, Poirier F (2004) Introduction to galectins. Glycoconj J 19(7–9):433–440. doi: 10.1023/ B:GLYC.0000014072.34840.04 PubMedGoogle Scholar
  10. 10.
    Hirabayashi J, Hashidate T, Arata Y, Nishi N, Nakamura T, Hirashima M, Urashima T, Oka T, Futai M, Muller WE, Yagi F, Kasai K (2002) Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta 1572(2–3):232–254PubMedCrossRefGoogle Scholar
  11. 11.
    Carlsson S, Oberg CT, Carlsson MC, Sundin A, Nilsson UJ, Smith D, Cummings RD, Almkvist J, Karlsson A, Leffler H (2007) Affinity of galectin-8 and its carbohydrate recognition domains for ligands in solution and at the cell surface. Glycobiology 17(6):663–676. doi: 10.1093/glycob/cwm026 PubMedCrossRefGoogle Scholar
  12. 12.
    Teichberg VI, Silman I, Beitsch DD, Resheff G (1975) A beta-D-galactoside binding protein from electric organ tissue of Electrophorus electricus. Proc Natl Acad Sci U S A 72(4):1383–1387PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Levi G, Teichberg VI (1981) Isolation and physicochemical characterization of electrolectin, a beta-D-galactoside binding lectin from the electric organ of Electrophorus electricus. J Biol Chem 256(11):5735–5740PubMedGoogle Scholar
  14. 14.
    de Waard A, Hickman S, Kornfeld S (1976) Isolation and properties of beta-galactoside binding lectins of calf heart and lung. J Biol Chem 251(23):7581–7587PubMedGoogle Scholar
  15. 15.
    Pritchett TJ, Brossmer R, Rose U, Paulson JC (1987) Recognition of monovalent sialosides by influenza virus H3 hemagglutinin. Virology 160(2):502–506PubMedCrossRefGoogle Scholar
  16. 16.
    Stowell SR, Arthur CM, Mehta P, Slanina KA, Blixt O, Leffler H, Smith DF, Cummings RD (2008) Galectin-1, -2, and -3 exhibit differential recognition of sialylated glycans and blood group antigens. J Biol Chem 283(15):10109–10123. doi: 10.1074/jbc.M709545200, M709545200 [pii]PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Ahmad N, Gabius HJ, Sabesan S, Oscarson S, Brewer CF (2004) Thermodynamic binding studies of bivalent oligosaccharides to galectin-1, galectin-3, and the carbohydrate recognition domain of galectin-3. Glycobiology 14(9):817–825. doi: 10.1093/glycob/cwh095 PubMedCrossRefGoogle Scholar
  18. 18.
    Brewer CF (2004) Thermodynamic binding studies of galectin-1, -3 and -7. Glycoconj J 19(7–9):459–465. doi: 10.1023/B:GLYC. 0000014075.62724.d0 PubMedGoogle Scholar
  19. 19.
    Karmakar S, Stowell SR, Cummings RD, McEver RP (2008) Galectin-1 signaling in leukocytes requires expression of complex-type N-glycans. Glycobiology 18(10):770–778PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Fukui S, Feizi T, Galustian C, Lawson AM, Chai W (2002) Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nat Biotechnol 20(10):1011–1017. doi: 10.1038/nbt735, nbt735 [pii]PubMedCrossRefGoogle Scholar
  21. 21.
    Blixt O, Head S, Mondala T, Scanlan C, Huflejt ME, Alvarez R, Bryan MC, Fazio F, Calarese D, Stevens J, Razi N, Stevens DJ, Skehel JJ, van Die I, Burton DR, Wilson IA, Cummings R, Bovin N, Wong CH, Paulson JC (2004) Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc Natl Acad Sci U S A 101(49):17033–17038. doi: 10.1073/pnas.0407902101, 0407902101 [pii]PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Disney MD, Seeberger PH (2004) The use of carbohydrate microarrays to study carbohydrate-cell interactions and to detect pathogens. Chem Biol 11(12):1701–1707. doi: 10.1016/j.chembiol.2004.10.011, S1074-5521(04)00312-6 [pii]PubMedCrossRefGoogle Scholar
  23. 23.
    Stowell SR, Dias-Baruffi M, Penttila L, Renkonen O, Nyame AK, Cummings RD (2004) Human galectin-1 recognition of poly-N-acetyllactosamine and chimeric polysaccharides. Glycobiology 14(2):157–167PubMedCrossRefGoogle Scholar
  24. 24.
    Arthur CM, Cummings RD, Stowell SR (2014) Using glycan microarrays to understand immunity. Curr Opin Chem Biol 18C:55–61. doi: 10.1016/j.cbpa.2013.12.017 CrossRefGoogle Scholar
  25. 25.
    Stowell SR, Arthur CM, McBride R, Berger O, Razi N, Heimburg-Molinaro J, Rodrigues JP, Noll AJ, von Gunten S, Smith DF, Knirel YA, Paulson JC, Cummings RD (2014) Microbial glycan microarrays define key features of host-microbial interactions. Nat Chem Biol 10(6):470–6PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Leppanen A, Stowell S, Blixt O, Cummings RD (2005) Dimeric galectin-1 binds with high affinity to alpha2,3-sialylated and non-sialylated terminal N-acetyllactosamine units on surface-bound extended glycans. J Biol Chem 280(7):5549–5562PubMedCrossRefGoogle Scholar
  27. 27.
    Sorme P, Kahl-Knutson B, Wellmar U, Nilsson UJ, Leffler H (2003) Fluorescence polarization to study galectin-ligand interactions. Methods Enzymol 362:504–512. doi: 10.1016/S0076-6879(03)01033-4, S0076687903010334 [pii]PubMedCrossRefGoogle Scholar
  28. 28.
    Song X, Lasanajak Y, Xia B, Heimburg-Molinaro J, Rhea JM, Ju H, Zhao C, Molinaro RJ, Cummings RD, Smith DF (2011) Shotgun glycomics: a microarray strategy for functional glycomics. Nat Methods 8(1):85–90. doi: 10.1038/nmeth.1540, nmeth.1540 [pii]PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Yu Y, Mishra S, Song X, Lasanajak Y, Bradley KC, Tappert MM, Air GM, Steinhauer DA, Halder S, Cotmore S, Tattersall P, Agbandje-McKenna M, Cummings RD, Smith DF (2012) Functional glycomic analysis of human milk glycans reveals the presence of virus receptors and embryonic stem cell biomarkers. J Biol Chem 287(53):44784–44799. doi: 10.1074/jbc.M112.425819, M112.425819 [pii]PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Palma AS, Feizi T, Zhang Y, Stoll MS, Lawson AM, Diaz-Rodriguez E, Campanero-Rhodes MA, Costa J, Gordon S, Brown GD, Chai W (2006) Ligands for the beta-glucan receptor, Dectin-1, assigned using “designer” microarrays of oligosaccharide probes (neoglycolipids) generated from glucan polysaccharides. J Biol Chem 281(9):5771–5779. doi: 10.1074/jbc.M511461200, M511461200 [pii]PubMedCrossRefGoogle Scholar
  31. 31.
    Song X, Heimburg-Molinaro J, Dahms NM, Smith DF, Cummings RD (2012) Preparation of a mannose-6-phosphate glycan microarray through fluorescent derivatization, phosphorylation, and immobilization of natural high-mannose N-glycans and application in ligand identification of P-type lectins. Methods Mol Biol 808:137–148. doi: 10.1007/978-1-61779-373-8_9 PubMedCrossRefGoogle Scholar
  32. 32.
    Song X, Yu H, Chen X, Lasanajak Y, Tappert MM, Air GM, Tiwari VK, Cao H, Chokhawala HA, Zheng H, Cummings RD, Smith DF (2011) A sialylated glycan microarray reveals novel interactions of modified sialic acids with proteins and viruses. J Biol Chem 286(36):31610–31622. doi: 10.1074/jbc.M111.274217, M111.274217 [pii]PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Knirel YA, Gabius HJ, Blixt O, Rapoport EM, Khasbiullina NR, Shilova NV, Bovin NV (2014) Human tandem-repeat-type galectins bind bacterial non-betaGal polysaccharides. Glycoconj J 31(1):7–12. doi: 10.1007/s10719-013-9497-3 PubMedCrossRefGoogle Scholar
  34. 34.
    Geissner A, Anish C, Seeberger PH (2014) Glycan arrays as tools for infectious disease research. Curr Opin Chem Biol 18C:38–45. doi: 10.1016/j.cbpa.2013.11.013 CrossRefGoogle Scholar
  35. 35.
    Stowell SR, Cho M, Feasley CL, Arthur CM, Song X, Colucci JK, Karmakar S, Mehta P, Dias-Baruffi M, McEver RP, Cummings RD (2009) Ligand reduces galectin-1 sensitivity to oxidative inactivation by enhancing dimer formation. J Biol Chem 284(8):4989–4999PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Stowell SR, Qian Y, Karmakar S, Koyama NS, Dias-Baruffi M, Leffler H, McEver RP, Cummings RD (2008) Differential roles of galectin-1 and galectin-3 in regulating leukocyte viability and cytokine secretion. J Immunol 180(5):3091–3102PubMedCrossRefGoogle Scholar
  37. 37.
    Stowell SR, Arthur CM, Slanina KA, Horton JR, Smith DF, Cummings RD (2008) Dimeric galectin-8 induces phosphatidylserine exposure in leukocytes through polylactosamine recognition by the C-terminal domain. J Biol Chem 283(29):20547–20559PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Poland PA, Rondanino C, Kinlough CL, Heimburg-Molinaro J, Arthur CM, Stowell SR, Smith DF, Hughey RP (2011) Identification and characterization of endogenous galectins expressed in Madin Darby canine kidney cells. J Biol Chem 286(8):6780–6790. doi: 10.1074/jbc.M110.179002 PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Stowell SR, Arthur CM, Dias-Baruffi M, Rodrigues LC, Gourdine JP, Heimburg-Molinaro J, Ju T, Molinaro RJ, Rivera-Marrero C, Xia B, Smith DF, Cummings RD (2010) Innate immune lectins kill bacteria expressing blood group antigen. Nat Med 16(3):295–301. doi: 10.1038/nm.2103 PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Leppanen A, White SP, Helin J, McEver RP, Cummings RD (2000) Binding of glycosulfopeptides to P-selectin requires stereospecific contributions of individual tyrosine sulfate and sugar residues. J Biol Chem 275(50):39569–39578. doi: 10.1074/jbc.M005005200, M005005200 [pii]PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Connie M. Arthur
    • 1
  • Lílian Cataldi Rodrigues
    • 2
  • Marcelo Dias Baruffi
    • 2
  • Harold C. Sullivan
    • 1
  • Jamie Heimburg-Molinaro
    • 3
  • Dave F. Smith
    • 3
  • Richard D. Cummings
    • 3
  • Sean R. Stowell
    • 4
    Email author
  1. 1.The Department of Pathology and Laboratory MedicineEmory University School of MedicineAtlantaUSA
  2. 2.Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Clinical, Toxicological and Bromatological AnalysisUniversity of Sao PauloRibeirão Preto-SBrazil
  3. 3.Department of BiochemistryEmory University School of MedicineAtlantaUSA
  4. 4.Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory MedicineEmory University School of MedicineAtlantaUSA

Personalised recommendations