Skip to main content

Examining Galectin Binding Specificity Using Glycan Microarrays

  • Protocol
  • First Online:
Galectins

Abstract

Glycan binding proteins (GBPs) possess the unique ability to regulate a wide variety of biological processes through interactions with highly modifiable cell surface glycans. While many studies demonstrate the impact of glycan modification on GBP recognition and activity, the relative contribution of subtle changes in glycan structure on GBP binding can be difficult to define. To overcome limitations in the analysis of GBP-glycan interactions, recent studies utilized glycan microarray platforms containing hundreds of structurally defined glycans. These studies not only provided important information regarding GBP–glycan interactions, but have also resulted in significant insight into the binding specificity and biological activity of the galectin family. We will describe the methods used when employing glycan microarray platforms to examine galectin–glycan binding specificity and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cerliani JP, Stowell SR, Mascanfroni ID, Arthur CM, Cummings RD, Rabinovich GA (2011) Expanding the universe of cytokines and pattern recognition receptors: galectins and glycans in innate immunity. J Clin Immunol 31(1):10–21. doi:10.1007/s10875-010-9494-2

    Article  PubMed  CAS  Google Scholar 

  2. Cooper DN, Barondes SH (1999) God must love galectins; he made so many of them. Glycobiology 9(10):979–984

    Article  PubMed  CAS  Google Scholar 

  3. Brewer CF, Miceli MC, Baum LG (2002) Clusters, bundles, arrays and lattices: novel mechanisms for lectin-saccharide-mediated cellular interactions. Curr Opin Struct Biol 12(5):616–623

    Article  PubMed  CAS  Google Scholar 

  4. Liu FT, Patterson RJ, Wang JL (2002) Intracellular functions of galectins. Biochim Biophys Acta 1572(2–3):263–273

    Article  PubMed  CAS  Google Scholar 

  5. Dias-Baruffi M, Stowell SR, Song SC, Arthur CM, Cho M, Rodrigues LC, Montes MA, Rossi MA, James JA, McEver RP, Cummings RD (2009) Differential expression of immunomodulatory galectin-1 in peripheral leukocytes and adult tissues and its cytosolic organization in striated muscle. Glycobiology 20(5):507–520

    Article  Google Scholar 

  6. Nakahara S, Raz A (2006) On the role of galectins in signal transduction. Methods Enzymol 417:273–289. doi:10.1016/S0076-6879(06)17019-6

    Article  PubMed  CAS  Google Scholar 

  7. van Kooyk Y, Rabinovich GA (2008) Protein-glycan interactions in the control of innate and adaptive immune responses. Nat Immunol 9(6):593–601. doi:10.1038/ni.f.203

    Article  PubMed  Google Scholar 

  8. Cerri DG, Rodrigues LC, Stowell SR, Araujo DD, Coelho MC, Oliveira SR, Bizario JC, Cummings RD, Dias-Baruffi M, Costa MC (2008) Degeneration of dystrophic or injured skeletal muscles induces high expression of galectin-1. Glycobiology 18(11):842–850

    Article  PubMed  CAS  Google Scholar 

  9. Leffler H, Carlsson S, Hedlund M, Qian Y, Poirier F (2004) Introduction to galectins. Glycoconj J 19(7–9):433–440. doi:10.1023/ B:GLYC.0000014072.34840.04

    PubMed  Google Scholar 

  10. Hirabayashi J, Hashidate T, Arata Y, Nishi N, Nakamura T, Hirashima M, Urashima T, Oka T, Futai M, Muller WE, Yagi F, Kasai K (2002) Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta 1572(2–3):232–254

    Article  PubMed  CAS  Google Scholar 

  11. Carlsson S, Oberg CT, Carlsson MC, Sundin A, Nilsson UJ, Smith D, Cummings RD, Almkvist J, Karlsson A, Leffler H (2007) Affinity of galectin-8 and its carbohydrate recognition domains for ligands in solution and at the cell surface. Glycobiology 17(6):663–676. doi:10.1093/glycob/cwm026

    Article  PubMed  CAS  Google Scholar 

  12. Teichberg VI, Silman I, Beitsch DD, Resheff G (1975) A beta-D-galactoside binding protein from electric organ tissue of Electrophorus electricus. Proc Natl Acad Sci U S A 72(4):1383–1387

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Levi G, Teichberg VI (1981) Isolation and physicochemical characterization of electrolectin, a beta-D-galactoside binding lectin from the electric organ of Electrophorus electricus. J Biol Chem 256(11):5735–5740

    PubMed  CAS  Google Scholar 

  14. de Waard A, Hickman S, Kornfeld S (1976) Isolation and properties of beta-galactoside binding lectins of calf heart and lung. J Biol Chem 251(23):7581–7587

    PubMed  Google Scholar 

  15. Pritchett TJ, Brossmer R, Rose U, Paulson JC (1987) Recognition of monovalent sialosides by influenza virus H3 hemagglutinin. Virology 160(2):502–506

    Article  PubMed  CAS  Google Scholar 

  16. Stowell SR, Arthur CM, Mehta P, Slanina KA, Blixt O, Leffler H, Smith DF, Cummings RD (2008) Galectin-1, -2, and -3 exhibit differential recognition of sialylated glycans and blood group antigens. J Biol Chem 283(15):10109–10123. doi:10.1074/jbc.M709545200, M709545200 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Ahmad N, Gabius HJ, Sabesan S, Oscarson S, Brewer CF (2004) Thermodynamic binding studies of bivalent oligosaccharides to galectin-1, galectin-3, and the carbohydrate recognition domain of galectin-3. Glycobiology 14(9):817–825. doi:10.1093/glycob/cwh095

    Article  PubMed  CAS  Google Scholar 

  18. Brewer CF (2004) Thermodynamic binding studies of galectin-1, -3 and -7. Glycoconj J 19(7–9):459–465. doi:10.1023/B:GLYC. 0000014075.62724.d0

    PubMed  Google Scholar 

  19. Karmakar S, Stowell SR, Cummings RD, McEver RP (2008) Galectin-1 signaling in leukocytes requires expression of complex-type N-glycans. Glycobiology 18(10):770–778

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Fukui S, Feizi T, Galustian C, Lawson AM, Chai W (2002) Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nat Biotechnol 20(10):1011–1017. doi:10.1038/nbt735, nbt735 [pii]

    Article  PubMed  CAS  Google Scholar 

  21. Blixt O, Head S, Mondala T, Scanlan C, Huflejt ME, Alvarez R, Bryan MC, Fazio F, Calarese D, Stevens J, Razi N, Stevens DJ, Skehel JJ, van Die I, Burton DR, Wilson IA, Cummings R, Bovin N, Wong CH, Paulson JC (2004) Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc Natl Acad Sci U S A 101(49):17033–17038. doi:10.1073/pnas.0407902101, 0407902101 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Disney MD, Seeberger PH (2004) The use of carbohydrate microarrays to study carbohydrate-cell interactions and to detect pathogens. Chem Biol 11(12):1701–1707. doi:10.1016/j.chembiol.2004.10.011, S1074-5521(04)00312-6 [pii]

    Article  PubMed  CAS  Google Scholar 

  23. Stowell SR, Dias-Baruffi M, Penttila L, Renkonen O, Nyame AK, Cummings RD (2004) Human galectin-1 recognition of poly-N-acetyllactosamine and chimeric polysaccharides. Glycobiology 14(2):157–167

    Article  PubMed  CAS  Google Scholar 

  24. Arthur CM, Cummings RD, Stowell SR (2014) Using glycan microarrays to understand immunity. Curr Opin Chem Biol 18C:55–61. doi:10.1016/j.cbpa.2013.12.017

    Article  Google Scholar 

  25. Stowell SR, Arthur CM, McBride R, Berger O, Razi N, Heimburg-Molinaro J, Rodrigues JP, Noll AJ, von Gunten S, Smith DF, Knirel YA, Paulson JC, Cummings RD (2014) Microbial glycan microarrays define key features of host-microbial interactions. Nat Chem Biol 10(6):470–6

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Leppanen A, Stowell S, Blixt O, Cummings RD (2005) Dimeric galectin-1 binds with high affinity to alpha2,3-sialylated and non-sialylated terminal N-acetyllactosamine units on surface-bound extended glycans. J Biol Chem 280(7):5549–5562

    Article  PubMed  Google Scholar 

  27. Sorme P, Kahl-Knutson B, Wellmar U, Nilsson UJ, Leffler H (2003) Fluorescence polarization to study galectin-ligand interactions. Methods Enzymol 362:504–512. doi:10.1016/S0076-6879(03)01033-4, S0076687903010334 [pii]

    Article  PubMed  Google Scholar 

  28. Song X, Lasanajak Y, Xia B, Heimburg-Molinaro J, Rhea JM, Ju H, Zhao C, Molinaro RJ, Cummings RD, Smith DF (2011) Shotgun glycomics: a microarray strategy for functional glycomics. Nat Methods 8(1):85–90. doi:10.1038/nmeth.1540, nmeth.1540 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Yu Y, Mishra S, Song X, Lasanajak Y, Bradley KC, Tappert MM, Air GM, Steinhauer DA, Halder S, Cotmore S, Tattersall P, Agbandje-McKenna M, Cummings RD, Smith DF (2012) Functional glycomic analysis of human milk glycans reveals the presence of virus receptors and embryonic stem cell biomarkers. J Biol Chem 287(53):44784–44799. doi:10.1074/jbc.M112.425819, M112.425819 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Palma AS, Feizi T, Zhang Y, Stoll MS, Lawson AM, Diaz-Rodriguez E, Campanero-Rhodes MA, Costa J, Gordon S, Brown GD, Chai W (2006) Ligands for the beta-glucan receptor, Dectin-1, assigned using “designer” microarrays of oligosaccharide probes (neoglycolipids) generated from glucan polysaccharides. J Biol Chem 281(9):5771–5779. doi:10.1074/jbc.M511461200, M511461200 [pii]

    Article  PubMed  CAS  Google Scholar 

  31. Song X, Heimburg-Molinaro J, Dahms NM, Smith DF, Cummings RD (2012) Preparation of a mannose-6-phosphate glycan microarray through fluorescent derivatization, phosphorylation, and immobilization of natural high-mannose N-glycans and application in ligand identification of P-type lectins. Methods Mol Biol 808:137–148. doi:10.1007/978-1-61779-373-8_9

    Article  PubMed  CAS  Google Scholar 

  32. Song X, Yu H, Chen X, Lasanajak Y, Tappert MM, Air GM, Tiwari VK, Cao H, Chokhawala HA, Zheng H, Cummings RD, Smith DF (2011) A sialylated glycan microarray reveals novel interactions of modified sialic acids with proteins and viruses. J Biol Chem 286(36):31610–31622. doi:10.1074/jbc.M111.274217, M111.274217 [pii]

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Knirel YA, Gabius HJ, Blixt O, Rapoport EM, Khasbiullina NR, Shilova NV, Bovin NV (2014) Human tandem-repeat-type galectins bind bacterial non-betaGal polysaccharides. Glycoconj J 31(1):7–12. doi:10.1007/s10719-013-9497-3

    Article  PubMed  CAS  Google Scholar 

  34. Geissner A, Anish C, Seeberger PH (2014) Glycan arrays as tools for infectious disease research. Curr Opin Chem Biol 18C:38–45. doi:10.1016/j.cbpa.2013.11.013

    Article  Google Scholar 

  35. Stowell SR, Cho M, Feasley CL, Arthur CM, Song X, Colucci JK, Karmakar S, Mehta P, Dias-Baruffi M, McEver RP, Cummings RD (2009) Ligand reduces galectin-1 sensitivity to oxidative inactivation by enhancing dimer formation. J Biol Chem 284(8):4989–4999

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Stowell SR, Qian Y, Karmakar S, Koyama NS, Dias-Baruffi M, Leffler H, McEver RP, Cummings RD (2008) Differential roles of galectin-1 and galectin-3 in regulating leukocyte viability and cytokine secretion. J Immunol 180(5):3091–3102

    Article  PubMed  CAS  Google Scholar 

  37. Stowell SR, Arthur CM, Slanina KA, Horton JR, Smith DF, Cummings RD (2008) Dimeric galectin-8 induces phosphatidylserine exposure in leukocytes through polylactosamine recognition by the C-terminal domain. J Biol Chem 283(29):20547–20559

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Poland PA, Rondanino C, Kinlough CL, Heimburg-Molinaro J, Arthur CM, Stowell SR, Smith DF, Hughey RP (2011) Identification and characterization of endogenous galectins expressed in Madin Darby canine kidney cells. J Biol Chem 286(8):6780–6790. doi:10.1074/jbc.M110.179002

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Stowell SR, Arthur CM, Dias-Baruffi M, Rodrigues LC, Gourdine JP, Heimburg-Molinaro J, Ju T, Molinaro RJ, Rivera-Marrero C, Xia B, Smith DF, Cummings RD (2010) Innate immune lectins kill bacteria expressing blood group antigen. Nat Med 16(3):295–301. doi:10.1038/nm.2103

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Leppanen A, White SP, Helin J, McEver RP, Cummings RD (2000) Binding of glycosulfopeptides to P-selectin requires stereospecific contributions of individual tyrosine sulfate and sugar residues. J Biol Chem 275(50):39569–39578. doi:10.1074/jbc.M005005200, M005005200 [pii]

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Blood Foundation, American Society of Hematology and Hemophilia of Georgia to S.R.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean R. Stowell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Arthur, C.M. et al. (2015). Examining Galectin Binding Specificity Using Glycan Microarrays. In: Stowell, S., Cummings, R. (eds) Galectins. Methods in Molecular Biology, vol 1207. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1396-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1396-1_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1395-4

  • Online ISBN: 978-1-4939-1396-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics