Galectins pp 105-114 | Cite as

Evaluation of Galectin Binding by Surface Plasmon Resonance

  • Padmaja Mehta-D’souzaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1207)


Surface Plasmon Resonance (SPR) instruments, like the BIAcore 3000, are useful for studying the binding between macromolecules in real time. The high sensitivity and low sample consumption in the BIAcore enables the measurement of rapid kinetics and low affinities characteristic of many biological interactions. This chapter describes the affinity measurement of Galectins-1, -2, and -3 and their glycoside ligands using this approach.

Key words

Surface plasmon resonance (SPR) Streptavidin (SA) sensor chip Affinity Ligand Analyte Flow cell (fc) Galectin Glycosides 



The author thanks Drs. Sean R. Stowell, Richard D. Cummings, and Richard Alvarez for helpful discussions during the course of this study. The BIAcore 3000 instrument used in this study was purchased with an NIH shared instrumentation grant awarded to Rodger P. McEver. The study was carried out in the Biacore Core Facility at the Oklahoma Medical Research Foundation.


  1. 1.
    Malmqvist M, Karlsson R (1997) Biomolecular interaction analysis: affinity biosensor technologies for functional analysis of proteins. Curr Opin Chem Biol 1(3):378–383PubMedCrossRefGoogle Scholar
  2. 2.
    Morton TA, Myszka DG (1998) Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Methods Enzymol 295:268–294PubMedCrossRefGoogle Scholar
  3. 3.
    O’Shannessy DJ, Brigham-Burke M, Soneson KK, Hensley P, Brooks I (1993) Determination of rate and equilibrium binding constants for macromolecular interactions using surface plasmon resonance: use of nonlinear least squares analysis methods. Anal Biochem 212(2):457–468PubMedCrossRefGoogle Scholar
  4. 4.
    Cerliani JP, Stowell SR, Mascanfroni ID, Arthur CM, Cummings RD, Rabinovich GA (2011) Expanding the universe of cytokines and pattern recognition receptors: galectins and glycans in innate immunity. J Clin Immunol 31(1):10–21. doi: 10.1007/s10875-010-9494-2 PubMedCrossRefGoogle Scholar
  5. 5.
    Leffler H, Carlsson S, Hedlund M, Qian Y, Poirier F (2004) Introduction to galectins. Glycoconj J 19(7–9):433–440. doi: 10.1023/B:GLYC.0000014072.34840.04 PubMedGoogle Scholar
  6. 6.
    Hirabayashi J, Hashidate T, Arata Y, Nishi N, Nakamura T, Hirashima M, Urashima T, Oka T, Futai M, Muller WE, Yagi F, Kasai K (2002) Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta 1572(2–3):232–254PubMedCrossRefGoogle Scholar
  7. 7.
    Dam TK, Gabius HJ, Andre S, Kaltner H, Lensch M, Brewer CF (2005) Galectins bind to the multivalent glycoprotein asialofetuin with enhanced affinities and a gradient of decreasing binding constants. Biochemistry 44(37):12564–12571. doi: 10.1021/bi051144z PubMedCrossRefGoogle Scholar
  8. 8.
    Sorme P, Kahl-Knutsson B, Huflejt M, Nilsson UJ, Leffler H (2004) Fluorescence polarization as an analytical tool to evaluate galectin-ligand interactions. Anal Biochem 334(1):36–47. doi: 10.1016/j.ab.2004.06.042 PubMedCrossRefGoogle Scholar
  9. 9.
    Stowell SR, Arthur CM, Mehta P, Slanina KA, Blixt O, Leffler H, Smith DF, Cummings RD (2008) Galectin-1, -2, and -3 exhibit differential recognition of sialylated glycans and blood group antigens. J Biol Chem 283(15):10109–10123. doi: 10.1074/jbc.M709545200 PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Carlsson S, Oberg CT, Carlsson MC, Sundin A, Nilsson UJ, Smith D, Cummings RD, Almkvist J, Karlsson A, Leffler H (2007) Affinity of galectin-8 and its carbohydrate recognition domains for ligands in solution and at the cell surface. Glycobiology 17(6):663–676. doi: 10.1093/glycob/cwm026 PubMedCrossRefGoogle Scholar
  11. 11.
    Brewer CF (2004) Thermodynamic binding studies of galectin-1, -3 and -7. Glycoconj J 19(7–9):459–465. doi: 10.1023/B:GLYC. 00000 14075.62724.d0 PubMedGoogle Scholar
  12. 12.
    Earl LA, Bi S, Baum LG (2011) Galectin multimerization and lattice formation are regulated by linker region structure. Glycobiology 21(1):6–12. doi: 10.1093/glycob/cwq144 PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Stowell SR, Arthur CM, Dias-Baruffi M, Rodrigues LC, Gourdine JP, Heimburg-Molinaro J, Ju T, Molinaro RJ, Rivera-Marrero C, Xia B, Smith DF, Cummings RD (2010) Innate immune lectins kill bacteria expressing blood group antigen. Nat Med 16(3):295–301. doi: 10.1038/nm.2103 PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Poland PA, Rondanino C, Kinlough CL, Heimburg-Molinaro J, Arthur CM, Stowell SR, Smith DF, Hughey RP (2011) Identification and characterization of endogenous galectins expressed in Madin Darby canine kidney cells. J Biol Chem 286(8):6780–6790. doi: 10.1074/jbc.M110.179002 PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Karmakar S, Stowell SR, Cummings RD, McEver RP (2008) Galectin-1 signaling in leukocytes requires expression of complex-type N-glycans. Glycobiology 18(10):770–778PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Stowell SR, Cho M, Feasley CL, Arthur CM, Song X, Colucci JK, Karmakar S, Mehta P, Dias-Baruffi M, McEver RP, Cummings RD (2009) Ligand reduces galectin-1 sensitivity to oxidative inactivation by enhancing dimer formation. J Biol Chem 284(8):4989–4999. doi: 10.1074/jbc.M808925200 PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Ahmad N, Gabius HJ, Sabesan S, Oscarson S, Brewer CF (2004) Thermodynamic binding studies of bivalent oligosaccharides to galectin-1, galectin-3, and the carbohydrate recognition domain of galectin-3. Glycobiology 14(9):817–825. doi: 10.1093/glycob/cwh095 PubMedCrossRefGoogle Scholar
  18. 18.
    Brewer CF, Miceli MC, Baum LG (2002) Clusters, bundles, arrays and lattices: novel mechanisms for lectin-saccharide-mediated cellular interactions. Curr Opin Struct Biol 12(5):616–623PubMedCrossRefGoogle Scholar
  19. 19.
    Arthur CM, Cummings RD, Stowell SR (2014) Using glycan microarrays to understand immunity. Curr Opin Chem Biol 18C:55–61. doi: 10.1016/j.cbpa.2013.12.017 CrossRefGoogle Scholar
  20. 20.
    Stowell SR, Arthur CM, McBride R, Berger O, Razi N, Heimburg-Molinaro J, Rodrigues JP, Noll AJ, von Gunten S, Smith DF, Knirel YA, Paulson JC, Cummings RD (2014) Microbial glycan microarrays define key features of host-microbial interactions. Nat Chem Biol 10:470–476PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Mehta P, Cummings RD, McEver RP (1998) Affinity and kinetic analysis of P-selectin binding to P-selectin glycoprotein ligand-1. J Biol Chem 273(49):32506–32513PubMedCrossRefGoogle Scholar
  22. 22.
    Stowell SR, Dias-Baruffi M, Penttila L, Renkonen O, Nyame AK, Cummings RD (2004) Human galectin-1 recognition of poly-N-acetyllactosamine and chimeric polysaccharides. Glycobiology 14(2):157–167PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Oklahoma Medical Research CenterOklahoma CityUSA

Personalised recommendations