Advertisement

Galectins pp 91-104 | Cite as

Examination of Whole Cell Galectin Binding by Solid Phase and Flow Cytometric Analysis

  • Anne LeppänenEmail author
  • Connie M. Arthur
  • Sean R. Stowell
  • Richard D. Cummings
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1207)

Abstract

We have utilized simple flow cytometric and fluorescence-based solid phase assays to study the interaction of glycan-binding proteins (GBP) to cell surface glycoconjugates. These methods utilize commonly employed flow cytometry techniques and commercially available streptavidin-coated microplates to immobilize various biotinylated ligands, such as glycopeptides, oligosaccharides, and whole cells. Using this approach, fluorescently labeled GBPs, in particular, members of the galectin family, can be interrogated for potential interactions with cell surface carbohydrates, including elucidation of the potential impact of alterations in glycosylation on carbohydrate recognition. Using these approaches, we present examples of flow cytometric and fluorescence-based solid phase assays to study galectin–carbohydrate interactions.

Key words

Galectin-1 Solid phase assay Biotinylation Fluorescence labeling Immobilization Binding affinity 

References

  1. 1.
    Cerliani JP, Stowell SR, Mascanfroni ID, Arthur CM, Cummings RD, Rabinovich GA (2011) Expanding the universe of cytokines and pattern recognition receptors: galectins and glycans in innate immunity. J Clin Immunol 31(1):10–21. doi: 10.1007/s10875-010-9494-2 PubMedCrossRefGoogle Scholar
  2. 2.
    van Kooyk Y, Rabinovich GA (2008) Protein-glycan interactions in the control of innate and adaptive immune responses. Nat Immunol 9(6):593–601. doi: 10.1038/ni.f.203 PubMedCrossRefGoogle Scholar
  3. 3.
    Poland PA, Rondanino C, Kinlough CL, Heimburg-Molinaro J, Arthur CM, Stowell SR, Smith DF, Hughey RP (2011) Identification and characterization of endogenous galectins expressed in Madin Darby canine kidney cells. J Biol Chem 286(8):6780–6790. doi: 10.1074/jbc.M110.179002 PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Arthur CM, Cummings RD, Stowell SR (2014) Using glycan microarrays to understand immunity. Curr Opin Chem Biol 18C: 55–61. doi: 10.1016/j.cbpa.2013.12.017 CrossRefGoogle Scholar
  5. 5.
    Blixt O, Head S, Mondala T, Scanlan C, Huflejt ME, Alvarez R, Bryan MC, Fazio F, Calarese D, Stevens J, Razi N, Stevens DJ, Skehel JJ, van Die I, Burton DR, Wilson IA, Cummings R, Bovin N, Wong CH, Paulson JC (2004) Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc Natl Acad Sci U S A 101(49):17033–17038. doi: 10.1073/pnas.0407902101 PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Song X, Xia B, Stowell SR, Lasanajak Y, Smith DF, Cummings RD (2009) Novel fluorescent glycan microarray strategy reveals ligands for galectins. Chem Biol 16(1):36–47. doi: 10.1016/ j.chembiol.2008.11.004 PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Song X, Lasanajak Y, Olson LJ, Boonen M, Dahms NM, Kornfeld S, Cummings RD, Smith DF (2009) Glycan microarray analysis of P-type lectins reveals distinct phosphomannose glycan recognition. J Biol Chem 284(50):35201–35214. doi: 10.1074/jbc.M109.056119 PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    de Boer AR, Hokke CH, Deelder AM, Wuhrer M (2007) General microarray technique for immobilization and screening of natural glycans. Anal Chem 79(21):8107–8113. doi: 10.1021/ ac071187g PubMedCrossRefGoogle Scholar
  9. 9.
    Song X, Lasanajak Y, Rivera-Marrero C, Luyai A, Willard M, Smith DF, Cummings RD (2009) Generation of a natural glycan microarray using 9-fluorenylmethyl chloroformate (FmocCl) as a cleavable fluorescent tag. Anal Biochem 395(2): 151–160. doi: 10.1016/j.ab. 2009.08.024 PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Liu Y, Palma AS, Feizi T (2009) Carbohydrate microarrays: key developments in glycobiology. Biol Chem 390(7):647–656. doi: 10.1515/BC. 2009.071 PubMedCrossRefGoogle Scholar
  11. 11.
    Song X, Lasanajak Y, Xia B, Heimburg-Molinaro J, Rhea JM, Ju H, Zhao C, Molinaro RJ, Cummings RD, Smith DF (2011) Shotgun glycomics: a microarray strategy for functional glycomics. Nat Methods 8(1):85–90. doi:  10.1038/ nmeth.1540 PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Patnaik SK, Potvin B, Carlsson S, Sturm D, Leffler H, Stanley P (2006) Complex N-glycans are the major ligands for galectin-1, -3, and -8 on Chinese hamster ovary cells. Glycobiology 16(4):305–317. doi: 10.1093/glycob/cwj063 PubMedCrossRefGoogle Scholar
  13. 13.
    Kohatsu L, Hsu DK, Jegalian AG, Liu FT, Baum LG (2006) Galectin-3 induces death of Candida species expressing specific beta-1,2-linked mannans. J Immunol 177(7):4718–4726PubMedCrossRefGoogle Scholar
  14. 14.
    Karmakar S, Stowell SR, Cummings RD, McEver RP (2008) Galectin-1 signaling in leukocytes requires expression of complex-type N-glycans. Glycobiology 18(10):770–778PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Stowell SR, Arthur CM, Mehta P, Slanina KA, Blixt O, Leffler H, Smith DF, Cummings RD (2008) Galectin-1, -2, and -3 exhibit differential recognition of sialylated glycans and blood group antigens. J Biol Chem 283(15): 10109–10123PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Stowell SR, Arthur CM, Slanina KA, Horton JR, Smith DF, Cummings RD (2008) Dimeric Galectin-8 induces phosphatidylserine exposure in leukocytes through polylactosamine recognition by the C-terminal domain. J Biol Chem 283(29):20547–20559PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Stowell SR, Arthur CM, Dias-Baruffi M, Rodrigues LC, Gourdine JP, Heimburg-Molinaro J, Ju T, Molinaro RJ, Rivera-Marrero C, Xia B, Smith DF, Cummings RD (2010) Innate immune lectins kill bacteria expressing blood group antigen. Nat Med 16(3):295–301. doi: 10.1038/nm.2103 PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Bax M, Garcia-Vallejo JJ, Jang-Lee J, North SJ, Gilmartin TJ, Hernandez G, Crocker PR, Leffler H, Head SR, Haslam SM, Dell A, van Kooyk Y (2007) Dendritic cell maturation results in pronounced changes in glycan expression affecting recognition by siglecs and galectins. J Immunol 179(12):8216–8224PubMedCrossRefGoogle Scholar
  19. 19.
    Carlsson S, Oberg CT, Carlsson MC, Sundin A, Nilsson UJ, Smith D, Cummings RD, Almkvist J, Karlsson A, Leffler H (2007) Affinity of galectin-8 and its carbohydrate recognition domains for ligands in solution and at the cell surface. Glycobiology 17(6):663–676. doi: 10.1093/glycob/cwm026 PubMedCrossRefGoogle Scholar
  20. 20.
    Stowell SR, Arthur CM, McBride R, Berger O, Razi N, Heimburg-Molinaro J, Rodrigues JP, Noll AJ, von Gunten S, Smith DF, Knirel YA, Paulson JC, Cummings RD (2014) Microbial glycan microarrays define key features of host-microbial interactions. Nat Chem Biol 10: 470–476PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Liepkalns JS, Hod EA, Stowell SR, Cadwell CM, Spitalnik SL, Zimring JC (2012) Biphasic clearance of incompatible red blood cells through a novel mechanism requiring neither complement nor Fcgamma receptors in a murine model. Transfusion 52(12):2631–2645. doi: 10.1111/j.1537-2995.2012.03647.x PubMedCrossRefGoogle Scholar
  22. 22.
    Stowell SR, Liepkalns JS, Hendrickson JE, Girard-Pierce KR, Smith NH, Arthur CM, Zimring JC (2013) Antigen modulation confers protection to red blood cells from antibody through Fc gamma receptor ligation. J Immunol. doi: 10.4049/jimmunol.1300885 PubMedGoogle Scholar
  23. 23.
    Girard-Pierce KR, Stowell SR, Smith NH, Arthur CM, Sullivan HC, Hendrickson JE, Zimring JC (2013) A novel role for C3 in antibody-induced red blood cell clearance and antigen modulation. Blood 122(10):1793–1801. doi: 10.1182/blood-2013-06-508952 PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Stowell SR, Henry KL, Smith NH, Hudson KE, Halverson GR, Park JC, Bennett AM, Girard-Pierce KR, Arthur CM, Bunting ST, Zimring JC, Hendrickson JE (2013) Alloantibodies to a paternally derived RBC KEL antigen lead to hemolytic disease of the fetus/newborn in a murine model. Blood 122(8):1494–1504. doi: 10.1182/blood-2013-03-488874 PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Leffler H, Carlsson S, Hedlund M, Qian Y, Poirier F (2004) Introduction to galectins. Glycoconj J 19(7–9):433–440. doi: 10.1023/ B:GLYC.0000014072.34840.04 PubMedGoogle Scholar
  26. 26.
    Leppanen A, Stowell S, Blixt O, Cummings RD (2005) Dimeric galectin-1 binds with high affinity to alpha2,3-sialylated and non-sialylated terminal N-acetyllactosamine units on surface-bound extended glycans. J Biol Chem 280(7): 5549–5562PubMedCrossRefGoogle Scholar
  27. 27.
    Stowell SR, Qian Y, Karmakar S, Koyama NS, Dias-Baruffi M, Leffler H, McEver RP, Cummings RD (2008) Differential roles of galectin-1 and galectin-3 in regulating leukocyte viability and cytokine secretion. J Immunol 180(5):3091–3102PubMedCrossRefGoogle Scholar
  28. 28.
    Lyer PN, Wilkinson KD, Goldstein LJ (1976) An -N-acetyl-D-glycosamine binding lectin from Bandeiraea simplicifolia seeds. Arch Biochem Biophys 177(1):330–333PubMedCrossRefGoogle Scholar
  29. 29.
    Merkle RK, Cummings RD (1987) Relationship of the terminal sequences to the length of poly-N-acetyllactosamine chains in asparagine-linked oligosaccharides from the mouse lymphoma cell line BW5147. Immobilized tomato lectin interacts with high affinity with glycopeptides containing long poly-N-acetyllactosamine chains. J Biol Chem 262(17):8179–8189PubMedGoogle Scholar
  30. 30.
    Cedeno-Laurent F, Barthel SR, Opperman MJ, Lee DM, Clark RA, Dimitroff CJ (2010) Development of a nascent galectin-1 chimeric molecule for studying the role of leukocyte galectin-1 ligands and immune disease modulation. J Immunol 185(8):4659–4672. doi:  10.4049/jimmunol.1000715 PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Anne Leppänen
    • 1
    • 2
    Email author
  • Connie M. Arthur
    • 3
  • Sean R. Stowell
    • 3
  • Richard D. Cummings
    • 4
  1. 1.Glykos Finland Ltd.HelsinkiFinland
  2. 2.Department of BiosciencesUniversity of HelsinkiHelsinkiFinland
  3. 3.Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory MedicineEmory University School of MedicineAtlantaUSA
  4. 4.Department of BiochemistryEmory University School of MedicineAtlantaUSA

Personalised recommendations