Advertisement

Galectins pp 397-420 | Cite as

Effect of Galectins on Viral Transmission

  • Michel Ouellet
  • Christian St-Pierre
  • Michel J. Tremblay
  • Sachiko SatoEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1207)

Abstract

Recent reports suggest that some galectins bind to enveloped viruses. They include influenza virus, human immunodeficiency virus-1 (HIV-1), human T-cell leukemia virus-1 (HTLV-1), and Nipah virus. It is also suggested that the interaction between viruses and galectins influences viral attachment to their susceptible cells, affecting the viral infectivity. Our work suggests that galectin-1 increases the infectivity of HIV-1 and HTVL-1. Indeed, galectin-1 promotes the initial adsorption of HIV-1 to CD4+ cells through its binding to viral envelope gp120 and facilitates HIV-1 infection in a manner that is dependent on its recognition of β-galactoside residues. Thus, as galectin-1 can be considered as a pattern recognition receptor, HIV-1 exploits this host factor to promote its transmission or replication. In this chapter, we describe methods used to investigate this potential role of galectins in HIV-1 infection as a case in point for future studies on galectin–virus interactions.

Key words

Virus HIV-1 Galectins 

References

  1. 1.
    Levroney EL, Aguilar HC, Fulcher JA, Kohatsu L, Pace KE, Pang M, Gurney KB, Baum LG, Lee B (2005) Novel innate immune functions for galectin-1: galectin-1 inhibits cell fusion by nipah virus envelope glycoproteins and augments dendritic cell secretion of proinflammatory cytokines. J Immunol 175(1):413–420PubMedCrossRefGoogle Scholar
  2. 2.
    Garner OB, Aguilar HC, Fulcher JA, Levroney EL, Harrison R, Wright L, Robinson LR, Aspericueta V, Panico M, Haslam SM, Morris HR, Dell A, Lee B, Baum LG (2010) Endothelial galectin-1 binds to specific glycans on nipah virus fusion protein and inhibits maturation, mobility, and function to block syncytia formation. PLoS Pathog 6(7):e1000993. doi: 10.1371/journal.ppat.1000993 PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Yang ML, Chen YH, Wang SW, Huang YJ, Leu CH, Yeh NC, Chu CY, Lin CC, Shieh GS, Chen YL, Wang JR, Wang CH, Wu CL, Shiau AL (2011) Galectin-1 binds to influenza virus and ameliorates influenza virus pathogenesis. J Virol 85(19):10010–10020. doi: 10.1128/JVI.00301-11 PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Ouellet M, Mercier S, Pelletier I, Bounou S, Roy J, Hirabayashi J, Sato S, Tremblay MJ (2005) Galectin-1 acts as a soluble host factor that promotes HIV-1 infectivity through stabilization of virus attachment to host cells. J Immunol 174(7):4120–4126PubMedCrossRefGoogle Scholar
  5. 5.
    Gauthier S, Pelletier I, Ouellet M, Vargas A, Tremblay MJ, Sato S, Barbeau B (2008) Induction of galectin-1 expression by HTLV-I Tax and its impact on HTLV-I infectivity. Retrovirology 5:105PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Mercier S, St-Pierre C, Pelletier I, Ouellet M, Tremblay MJ, Sato S (2008) Galectin-1 promotes HIV-1 infectivity in macrophages through stabilization of viral adsorption. Virology 371(1):121–129PubMedCrossRefGoogle Scholar
  7. 7.
    St-Pierre C, Ouellet M, Tremblay MJ, Sato S (2010) Galectin-1 and HIV-1 infection. Methods in Enzymology 480:267–294PubMedCrossRefGoogle Scholar
  8. 8.
    St-Pierre C, Manya H, Ouellet M, Clark GF, Endo T, Tremblay MJ, Sato S (2011) Host-soluble galectin-1 promotes HIV-1 replication through a direct interaction with glycans of viral gp120 and host CD4. J Virol 85(22):11742–11751. doi: 10.1128/JVI.05351-11, JVI.05351-11 [pii]PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Sato S, Ouellet M, St-Pierre C, Tremblay MJ (2012) Glycans, galectins, and HIV-1 infection. Annals of the New York Academy of Sciences 1253:133–148. doi: 10.1111/j.1749-6632.2012.06475.x PubMedCrossRefGoogle Scholar
  10. 10.
    Reynolds JL, Law WC, Mahajan SD, Aalinkeel R, Nair B, Sykes DE, Mammen MJ, Yong KT, Hui R, Prasad PN, Schwartz SA (2012) Morphine and galectin-1 modulate HIV-1 infection of human monocyte-derived macrophages. J Immunol 188(8):3757–3765. doi: 10.4049/jimmunol.1102276 PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Pais-Correia AM, Sachse M, Guadagnini S, Robbiati V, Lasserre R, Gessain A, Gout O, Alcover A, Thoulouze MI (2010) Biofilm-like extracellular viral assemblies mediate HTLV-1 cell-to-cell transmission at virological synapses. Nat Med 16(1):83–89. doi: 10.1038/nm.2065, nm.2065 [pii]PubMedCrossRefGoogle Scholar
  12. 12.
    Karlsson Hedestam GB, Fouchier RA, Phogat S, Burton DR, Sodroski J, Wyatt RT (2008) The challenges of eliciting neutralizing antibodies to HIV-1 and to influenza virus. Nat Rev Microbiol 6(2):143–155PubMedCrossRefGoogle Scholar
  13. 13.
    Mehandru S, Poles MA, Tenner-Racz K, Horowitz A, Hurley A, Hogan C, Boden D, Racz P, Markowitz M (2004) Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. J Exp Med 200(6):761–770PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Hel Z, McGhee JR, Mestecky J (2006) HIV infection: first battle decides the war. Trends Immunol 27(6):274–281PubMedCrossRefGoogle Scholar
  15. 15.
    Haase AT (2005) Perils at mucosal front lines for HIV and SIV and their hosts. Nat Rev Immunol 5(10):783–792PubMedCrossRefGoogle Scholar
  16. 16.
    Brenchley JM, Schacker TW, Ruff LE, Price DA, Taylor JH, Beilman GJ, Nguyen PL, Khoruts A, Larson M, Haase AT, Douek DC (2004) CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med 200(6):749–759PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Mattapallil JJ, Douek DC, Hill B, Nishimura Y, Martin M, Roederer M (2005) Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature 434(7037):1093–1097PubMedCrossRefGoogle Scholar
  18. 18.
    Li Q, Duan L, Estes JD, Ma ZM, Rourke T, Wang Y, Reilly C, Carlis J, Miller CJ, Haase AT (2005) Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells. Nature 434(7037): 1148–1152PubMedGoogle Scholar
  19. 19.
    Bonomelli C, Doores KJ, Dunlop DC, Thaney V, Dwek RA, Burton DR, Crispin M, Scanlan CN (2011) The glycan shield of HIV is predominantly oligomannose independently of production system or viral clade. PLoS One 6(8):e23521. doi: 10.1371/journal.pone. 0023521, PONE-D-11-09577 [pii]
  20. 20.
    Scott MG, Nahm MH (1984) Mitogen-induced human IgG subclass expression. J Immunol 133(5):2454–2460PubMedGoogle Scholar
  21. 21.
    Tardif MR, Tremblay MJ (2005) Tetraspanin CD81 provides a costimulatory signal resulting in increased human immunodeficiency virus type 1 gene expression in primary CD4+ T lymphocytes through NF-kappaB, NFAT, and AP-1 transduction pathways. J Virol 79(7):4316–4328PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Cantin R, Fortin JF, Tremblay M (1996) The amount of host HLA-DR proteins acquired by HIV-1 is virus strain- and cell type-specific. Virology 218(2):372–381PubMedCrossRefGoogle Scholar
  23. 23.
    Dornadula G, Zhang H, Shetty S, Pomerantz RJ (1999) HIV-1 virions produced from replicating peripheral blood lymphocytes are more infectious than those from nonproliferating macrophages due to higher levels of intravirion reverse transcripts: implications for pathogenesis and transmission. Virology 253(1):10–16PubMedCrossRefGoogle Scholar
  24. 24.
    Bounou S, Leclerc JE, Tremblay MJ (2002) Presence of host ICAM-1 in laboratory and clinical strains of human immunodeficiency virus type 1 increases virus infectivity and CD4(+)-T-cell depletion in human lymphoid tissue, a major site of replication in vivo. J Virol 76(3):1004–1014PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Butler WT (1963) Hemagglutination studies with formalinized erythrocytes. Effect of bis-diazo-benzidine and tannic acid treatment on sensitization by soluble antigen. J Immunol 90:663–671PubMedGoogle Scholar
  26. 26.
    Giguere D, Sato S, St-Pierre C, Sirois S, Roy R (2006) Aryl O- and S-galactosides and lactosides as specific inhibitors of human galectins-1 and -3: role of electrostatic potential at O-3. Bioorg Med Chem Lett 16(6):1668–1672PubMedCrossRefGoogle Scholar
  27. 27.
    Whitney PL, Powell JT, Sanford GL (1986) Oxidation and chemical modification of lung beta-galactoside-specific lectin. Biochem J 238(3):683–689PubMedPubMedCentralGoogle Scholar
  28. 28.
    Stowell SR, Qian Y, Karmakar S, Koyama NS, Dias-Baruffi M, Leffler H, McEver RP, Cummings RD (2008) Differential roles of galectin-1 and galectin-3 in regulating leukocyte viability and cytokine secretion. J Immunol 180(5):3091–3102PubMedCrossRefGoogle Scholar
  29. 29.
    Ouellet M, Barbeau B, Tremblay MJ (1999) p56(lck), ZAP-70, SLP-76, and calcium-regulated effectors are involved in NF-kappaB activation by bisperoxovanadium phosphotyrosyl phosphatase inhibitors in human T cells. J Biol Chem 274(49):35029–35036PubMedCrossRefGoogle Scholar
  30. 30.
    Byers KB, Engelman A, Fontes B (2004) General guidelines for experimenting with HIV. Curr Protoc Immunol Chapter 12:Unit 12 11Google Scholar
  31. 31.
    Jackson JB, Balfour HH Jr (1988) Practical diagnostic testing for human immunodeficiency virus. Clin Microbiol Rev 1(1):124–138PubMedPubMedCentralGoogle Scholar
  32. 32.
    Delenda C, Audit M, Danos O (2002) Biosafety issues in lentivector production. Curr Top Microbiol Immunol 261:123–141PubMedGoogle Scholar
  33. 33.
    Wu Y (2004) HIV-1 gene expression: lessons from provirus and non-integrated DNA.Retrovirology 1:13PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Roos JW, Maughan MF, Liao Z, Hildreth JE, Clements JE (2000) LuSIV cells: a reporter cell line for the detection and quantitation of a single cycle of HIV and SIV replication. Virology 273(2):307–315PubMedCrossRefGoogle Scholar
  35. 35.
    Yates JL, Warren N, Sugden B (1985) Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature 313(6005):812–815PubMedCrossRefGoogle Scholar
  36. 36.
    Platt EJ, Wehrly K, Kuhmann SE, Chesebro B, Kabat D (1998) Effects of CCR5 and CD4 cell surface concentrations on infections by macrophagetropic isolates of human immunodeficiency virus type 1. J Virol 72(4):2855–2864PubMedPubMedCentralGoogle Scholar
  37. 37.
    Wei X, Decker JM, Liu H, Zhang Z, Arani RB, Kilby JM, Saag MS, Wu X, Shaw GM, Kappes JC (2002) Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother 46(6):1896–1905PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Li M, Gao F, Mascola JR, Stamatatos L, Polonis VR, Koutsoukos M, Voss G, Goepfert P, Gilbert P, Greene KM, Bilska M, Kothe DL, Salazar-Gonzalez JF, Wei X, Decker JM, Hahn BH, Montefiori DC (2005) Human immunodeficiency virus type 1 env clones from acute and early subtype B infections for standardized assessments of vaccine-elicited neutralizing antibodies. J Virol 79(16):10108–10125PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Tremblay MJ, Fortin JF, Cantin R (1998) The acquisition of host-encoded proteins by nascent HIV-1. Immunol Today 19(8):346–351PubMedCrossRefGoogle Scholar
  40. 40.
    Fortin JF, Cantin R, Lamontagne G, Tremblay M (1997) Host-derived ICAM-1 glycoproteins incorporated on human immunodeficiency virus type 1 are biologically active and enhance viral infectivity. J Virol 71(5):3588–3596PubMedPubMedCentralGoogle Scholar
  41. 41.
    Rossio JL, Esser MT, Suryanarayana K, Schneider DK, Bess JW Jr, Vasquez GM, Wiltrout TA, Chertova E, Grimes MK, Sattentau Q, Arthur LO, Henderson LE, Lifson JD (1998) Inactivation of human immunodeficiency virus type 1 infectivity with preservation of conformational and functional integrity of virion surface proteins. J Virol 72(10):7992–8001PubMedPubMedCentralGoogle Scholar
  42. 42.
    Chertova E, Crise BJ, Morcock DR, Bess JW Jr, Henderson LE, Lifson JD (2003) Sites, mechanism of action and lack of reversibility of primate lentivirus inactivation by preferential covalent modification of virion internal proteins. Curr Mol Med 3(3):265–272PubMedCrossRefGoogle Scholar
  43. 43.
    Hsu DK, Zuberi RI, Liu FT (1992) Biochemical and biophysical characterization of human recombinant IgE-binding protein, an S-type animal lectin. J Biol Chem 267(20):14167–14174PubMedGoogle Scholar
  44. 44.
    Hirabayashi J, Kasai K (1991) Effect of amino acid substitution by sited-directed mutagenesis on the carbohydrate recognition and stability of human 14-kDa beta-galactoside-binding lectin. The Journal of biological chemistry 266(35):23648–23653PubMedGoogle Scholar
  45. 45.
    Nieminen J, St-Pierre C, Sato S (2005) Galectin-3 interacts with naive and primed neutrophils, inducing innate immune responses. J Leukoc Biol 78(5):1127–1135PubMedGoogle Scholar
  46. 46.
    Pelletier I, Hashidate T, Urashima T, Nishi N, Nakamura T, Futai M, Arata Y, Kasai K, Hirashima M, Hirabayashi J, Sato S (2003) Specific recognition of Leishmania major poly-beta-galactosyl epitopes by galectin-9: possible implication of galectin-9 in interaction between L. major and host cells. J Biol Chem 278(25):22223–22230PubMedCrossRefGoogle Scholar
  47. 47.
    Sato S, Ouellet N, Pelletier I, Simard M, Rancourt A, Bergeron MG (2002) Role of galectin-3 as an adhesion molecule for neutrophil extravasation during streptococcal pneumonia. J Immunol 168(4):1813–1822PubMedCrossRefGoogle Scholar
  48. 48.
    Pelletier I, Sato S (2002) Specific recognition and cleavage of galectin-3 by Leishmania major through species-specific polygalactose epitope. J Biol Chem 277(20):17663–17670PubMedCrossRefGoogle Scholar
  49. 49.
    Koken SE, Greijer AE, Verhoef K, van Wamel J, Bukrinskaya AG, Berkhout B (1994) Intracellular analysis of in vitro modified HIV Tat protein. J Biol Chem 269(11):8366–8375PubMedGoogle Scholar
  50. 50.
    Cho M, Cummings RD (1996) Characterization of monomeric forms of galectin-1 generated by site-directed mutagenesis. Biochemistry 35(40):13081–13088PubMedCrossRefGoogle Scholar
  51. 51.
    Stowell SR, Karmakar S, Stowell CJ, Dias-Baruffi M, McEver RP, Cummings RD (2007) Human galectin-1, -2, and -4 induce surface exposure of phosphatidylserine in activated human neutrophils but not in activated T cells. Blood 109(1):219–227PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Scott SA, Bugarcic A, Blanchard H (2009) Characterisation of oxidized recombinant human galectin-1. Protein Pept Lett 16(10):1249–1255PubMedCrossRefGoogle Scholar
  53. 53.
    Horie H, Kadoya T, Hikawa N, Sango K, Inoue H, Takeshita K, Asawa R, Hiroi T, Sato M, Yoshioka T, Ishikawa Y (2004) Oxidized galectin-1 stimulates macrophages to promote axonal regeneration in peripheral nerves after axotomy. J Neurosci 24(8):1873–1880PubMedCrossRefGoogle Scholar
  54. 54.
    Stowell SR, Cho M, Feasley CL, Arthur CM, Song X, Colucci JK, Karmakar S, Mehta P, Dias-Baruffi M, McEver RP, Cummings RD (2009) Ligand reduces galectin-1 sensitivity to oxidative inactivation by enhancing dimer formation. J Biol Chem 284(8):4989–4999PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Michel Ouellet
    • 1
  • Christian St-Pierre
    • 2
  • Michel J. Tremblay
    • 1
  • Sachiko Sato
    • 2
    Email author
  1. 1.Laboratory of Human Immuno-Retrovirology, Research Centre for Infectious Diseases, Faculty of MedicineLaval UniversityQuebecCanada
  2. 2.Glycobiology and Bioimaging laboratory, Research Centre for Infectious Diseases, Faculty of MedicineLaval UniversityQuebecCanada

Personalised recommendations