Galectins pp 371-395 | Cite as

Evaluation of the Role of Galectins in Parasite Immunity

  • Sarah Preston
  • Jillian Dunphy
  • Travis Beddoe
  • Els MeeusenEmail author
  • Anna Young
Part of the Methods in Molecular Biology book series (MIMB, volume 1207)


Galectin-11 and galectin-14 are ruminant galectins involved in parasitic infections. Although their roles in parasite immunity are still being elucidated, its appears that their functions are parasite specific. In gastrointestinal infections with the nematode Haemonchus contortus, both galectin-11 and galectin-14 appear to be protective. However, in a chronic infection of liver fluke, Fasciola hepatica, these galectins may aid parasite survival. This chapter discusses the methods designed to study parasitic infections in sheep, which have provided us with insight into the functions of galectin-11 and galectin-14 during host–parasite interactions. These methods include parasite cultivation and infection, galectin staining of host and parasite tissue, surface staining of parasites with recombinant galectins and in vitro assays to monitor the effect of galectins on larval development.

Key words

Galectin-11 Galectin-14 Haemonchus contortus Fasciola hepatica Larval culture Immunohistochemistry Larval molting assay Larval growth assay Larval feeding assay 


  1. 1.
    Young AR, Meeusen EN (2004) Galectins in parasite infection and allergic inflammation. Glycoconj J 19(7–9):601–606PubMedGoogle Scholar
  2. 2.
    Toscano MA, Tongren JE, De Souza JB, Liu FT, Riley EM, Rabinovich GA (2012) Endogenous galectin-3 controls experimental malaria in a species-specific manner. Parasite Immunol 34(7):383–387. doi: 10.1111/j.1365-3024.2012.01366.x PubMedCrossRefGoogle Scholar
  3. 3.
    Pelletier I, Hashidate T, Urashima T, Nishill N, Nakamura T, Futai M, Arata Y, Kasai KI, Hirashima M, Hirabayashi J, Sato S (2003) Specific recognition of Leishmania major poly-β-galactosyl epitopes by galectin-9: possible implication of galectin-9 in interaction between L. major and host cells. J Biol Chem 278(25):22223–22230. doi: 10.1074/jbc.M302693200 PubMedCrossRefGoogle Scholar
  4. 4.
    Alves CMOS, Silva DAO, Azzolini AECS, Marzocchi-Machado CM, Carvalho JV, Pajuaba ACAM, Lucisano-Valim YM, Chammas R, Liu FT, Roque-Barreira MC, Mineo JR (2010) Galectin-3 plays a modulatory role in the life span and activation of murine neutrophils during early Toxoplasma gondii infection. Immunobiology 215(6):475–485. doi: 10.1016/j.imbio.2009.08.001 PubMedCrossRefGoogle Scholar
  5. 5.
    Van Den Berg TK, Honing H, Franke N, Van Remoortere A, Schiphorst WECM, Liu FT, Deelder AM, Cummings RD, Hokke CH, Van Die I (2004) LacdiNAc-glycans constitute a parasite pattern for galectin-3-mediated immune recognition. J Immunol 173(3):1902–1907PubMedCrossRefGoogle Scholar
  6. 6.
    Katoh S, Oomizu S, Niki T, Shimizu H, Obase Y, Korenaga M, Oka M, Hirashima M (2012) Possible regulatory role of galectin-9 on ascaris suum-induced eosinophilic lung inflammation in mice. Int Arch Allergy Immunol 158(Suppl 1):58–65. doi: 10.1159/000337769 PubMedCrossRefGoogle Scholar
  7. 7.
    Okumura CY, Baum LG, Johnson PJ (2008) Galectin-1 on cervical epithelial cells is a receptor for the sexually transmitted human parasite Trichomonas vaginalis. Cell Microbiol 10(10):2078–2090. doi: 10.1111/j.1462-5822.2008. 01190.x PubMedCrossRefGoogle Scholar
  8. 8.
    Robinson N, Pleasance J, Piedrafita D, Meeusen EN (2011) The kinetics of local cytokine and galectin expression after challenge infection with the gastrointestinal nematode, Haemonchus contortus. Int J Parasitol 41(5):487–493. doi: 10.1016/j.ijpara.2010.11.006 PubMedCrossRefGoogle Scholar
  9. 9.
    Hein WR, Pernthaner A, Piedrafita D, Meeusen EN (2010) Immune mechanisms of resistance to gastrointestinal nematode infections in sheep. Parasite Immunol 32(8):541–548. doi: 10.1111/j.1365-3024.2010.01213.x PubMedGoogle Scholar
  10. 10.
    Balic A, Bowles VM, Meeusen EN (2000) The immunobiology of gastrointestinal nematode infections in ruminants. Adv Parasitol 45:181–241PubMedCrossRefGoogle Scholar
  11. 11.
    Young AR, Barcham GJ, McWilliam HE, Piedrafita DM, Meeusen EN (2012) Galectin secretion and binding to adult Fasciola hepatica during chronic liver fluke infection of sheep. Vet Immunol Immunopathol 145(1–2):362–367. doi: 10.1016/j.vetimm.2011.12.010 PubMedCrossRefGoogle Scholar
  12. 12.
    Balic A, Cunningham CP, Meeusen ENT (2006) Eosinophil interactions with Haemonchus contortus larvae in the ovine gastrointestinal tract. Parasite Immunol 28(3):107–115. doi: 10.1111/j.1365-3024.2006.00816.x PubMedCrossRefGoogle Scholar
  13. 13.
    Dunphy JL, Barcham GJ, Bischof RJ, Young AR, Nash A, Meeusen EN (2002) Isolation and characterization of a novel eosinophil-specific galectin released into the lungs in response to allergen challenge. J Biol Chem 277(17):14916–14924. doi: 10.1074/jbc.M200214200 PubMedCrossRefGoogle Scholar
  14. 14.
    Young AR, Barcham GJ, Kemp JM, Dunphy JL, Nash A, Meeusen EN (2009) Functional characterization of an eosinophil-specific galectin, ovine galectin-14. Glycoconj J 26(4):423–432. doi: 10.1007/s10719-008-9190-0 PubMedCrossRefGoogle Scholar
  15. 15.
    Dvorak AM, Letourneau L, Login GR, Weller PF, Ackerman SJ (1988) Ultrastructural localization of the Charcot-Leyden crystal protein (lysophospholipase) to a distinct crystalloid-free granule population in mature human eosinophils. Blood 72(1):150–158PubMedGoogle Scholar
  16. 16.
    Ackerman SJ, Liu L, Kwatia MA, Savage MP, Leonidas DD, Jawahar Swaminathan G, Ravi Acharya K (2002) Charcot-leyden crystal protein (galectin-10) is not a dual function galectin with lysophospholipase activity but binds a lysophospholipase inhibitor in a novel structural fashion. J Biol Chem 277(17):14859–14868. doi: 10.1074/jbc.M200221200 PubMedCrossRefGoogle Scholar
  17. 17.
    Hanna REB (1980) Fasciola hepatica: glycocalyx replacement in the juvenile as a possible mechanism for protection against host immunity. Exp Parasitol 50(1):103–114PubMedCrossRefGoogle Scholar
  18. 18.
    Smith HV, Quinn R, Kusel JR, Girdwood RWA (1981) The effect of temperature and antimetabolites on antibody binding to the outer surface of second stage Toxocara canis larvae. Mol Biochem Parasitol 4(3–4):183–193PubMedCrossRefGoogle Scholar
  19. 19.
    Ashman K, Mather J, Wiltshire C, Jacobs HJ, Meeusen E (1995) Isolation of a larval surface glycoprotein from Haemonchus contortus and its possible role in evading host immunity. Mol Biochem Parasitol 70(1–2):175–179. doi: 10.1016/0166-6851(94)00210-e PubMedCrossRefGoogle Scholar
  20. 20.
    Chauvin A, Bouvet G, Boulard C (1995) Humoral and cellular immune responses to Fasciola hepatica experimental primary and secondary infection in sheep. Int J Parasitol 25(10):1227–1241. doi: 10.1016/0020-7519(95)00039-5 PubMedCrossRefGoogle Scholar
  21. 21.
    Dunphy JL, Balic A, Barcham GJ, Horvath AJ, Nash AD, Meeusen EN (2000) Isolation and characterization of a novel inducible mammalian galectin. J Biol Chem 275(41):32106–32113. doi: 10.1074/jbc.M003739200, M003739200 [pii]PubMedCrossRefGoogle Scholar
  22. 22.
    Hoorens P, Rinaldi M, Mihi B, Dreesen L, Grit G, Meeusen E, Li RW, Geldhof P (2011) Galectin-11 induction in the gastrointestinal tract of cattle following nematode and protozoan infections. Parasite Immunol 33(12):669–678. doi: 10.1111/j.1365-3024.2011.01336.x PubMedCrossRefGoogle Scholar
  23. 23.
    Pemberton AD, Brown JK, Craig NM, Pate J, McLean K, Inglis NF, Knox D, Knight PA (2012) Changes in protein expression in the sheep abomasum following trickle infection with Teladorsagia circumcincta. Parasitology 139(3):375–385PubMedCrossRefGoogle Scholar
  24. 24.
    Athanasiadou S, Pemberton A, Jackson F, Inglis N, Miller HRP, Thévenod F, Mackellar A, Huntley JF (2008) Proteomic approach to identify candidate effector molecules during the in vitro immune exclusion of infective Teladorsagia circumcincta in the abomasum of sheep. Vet Res 39(6):58PubMedCrossRefGoogle Scholar
  25. 25.
    Gray CA, Adelson DL, Bazer FW, Burghardt RC, Meeusen ENT, Spencer TE (2004) Discovery and characterization of an epithelial-specific galectin in the endometrium that forms crystals in the trophectoderm. Proc Natl Acad Sci U S A 101(21):7982–7987. doi: 10.1073/pnas.0402669101 PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Lewis SK, Farmer JL, Burghardt RC, Newton GR, Johnson GA, Adelson DL, Bazer FW, Spencer TE (2007) Galectin 15 (LGALS15): a gene uniquely expressed in the uteri of sheep and goats that functions in trophoblast attachment. Biol Reprod 77(6):1027–1036PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Sarah Preston
    • 1
    • 2
  • Jillian Dunphy
    • 3
  • Travis Beddoe
    • 4
  • Els Meeusen
    • 5
    Email author
  • Anna Young
    • 6
  1. 1.Biotechnology Research Laboratories, School of Biomedical SciencesMonash UniversityClaytonAustralia
  2. 2.Cooperative Research Centre for Sheep Industry Innovation, CJ Hawkins HomesteadUniversity of New EnglandArmidaleAustralia
  3. 3.School of Community HealthCharles Sturt UniversityAlburyAustralia
  4. 4.Department of Agricultural Sciences Centre for AgriBiosciencesLa Trobe UniversityBundooraAustralia
  5. 5.Department of Microbiology, School of Biomedical SciencesMonash UniversityClaytonAustralia
  6. 6.Department of Physiology, School of Biomedical SciencesMonash UniversityClaytonAustralia

Personalised recommendations