Advertisement

Galectins pp 327-341 | Cite as

Manipulating Galectin Expression in Zebrafish (Danio rerio)

  • Chiguang Feng
  • Mihai Nita-Lazar
  • Nuria González-Montalbán
  • Jingyu Wang
  • Justin Mancini
  • Chinnarajan Ravindran
  • Hafiz Ahmed
  • Gerardo R. VastaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1207)

Abstract

Techniques for disrupting gene expression are invaluable tools for the analysis of the biological role(s) of a gene product. Because of its genetic tractability and multiple advantages over conventional mammalian models, the zebrafish (Danio rerio) is recognized as a powerful system for gaining new insight into diverse aspects of human health and disease. Among the multiple mammalian gene families for which the zebrafish has shown promise as an invaluable model for functional studies, the galectins have attracted great interest due to their participation in early development, regulation of immune homeostasis, and recognition of microbial pathogens. Galectins are β-galactosyl-binding lectins with a characteristic sequence motif in their carbohydrate recognition domains (CRDs), which comprise an evolutionary conserved family ubiquitous in eukaryotic taxa. Galectins are emerging as key players in the modulation of many important pathological processes, which include acute and chronic inflammatory diseases, autoimmunity and cancer, thus making them potential molecular targets for innovative drug discovery. Here, we provide a review of the current methods available for the manipulation of gene expression in the zebrafish, with a focus on gene knockdown [morpholino (MO)-derived antisense oligonucleotides] and knockout (CRISPR-Cas) technologies.

Key words

Galectins Zebrafish Morpholino CRISPR-Cas Gene expression Microinjection 

Notes

Acknowledgments

Experimental work described here was supported by grant 5R01GM070589-06 from the National Institutes of Health to G.R.V.

References

  1. 1.
    Meeker ND, Trede NS (2008) Immunology and zebrafish: spawning new models of human disease. Dev Comp Immunol 32:745–757PubMedCrossRefGoogle Scholar
  2. 2.
    Feitsma H, Cuppen E (2008) Zebrafish as a cancer model. Mol Cancer Res 6:685–694PubMedCrossRefGoogle Scholar
  3. 3.
    Mahmood F, Mozere M, Zdebik AA, Stanescu HC, Tobin J, Beales PL, Kleta R, Bockenhauer D, Russell C (2013) Generation and validation of a zebrafish model of EAST (epilepsy, ataxia, sensorineural deafness and tubulopathy) syndrome. Dis Model Mech 6:652–660PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Streisinger G, Walker C, Dower N, Knauber D, Singer F (1981) Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291:293–296PubMedCrossRefGoogle Scholar
  5. 5.
    Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, Stemple DL, Stainier DY, Zwartkruis F, Abdelilah S, Rangini Z, Belak J, Boggs C (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37–46PubMedGoogle Scholar
  6. 6.
    Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP, Kelsh RN, Furutani-Seiki M, Vogelsang E, Beuchle D, Schach U, Fabian C, Nusslein-Volhard C (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36PubMedGoogle Scholar
  7. 7.
    Barbazuk WB, Korf I, Kadavi C, Heyen J, Tate S, Wun E, Bedell JA, McPherson JD, Johnson SL (2000) The syntenic relationship of the zebrafish and human genomes. Genome Res 10:1351–1358PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Vital C, Martins EP (2013) Socially-central zebrafish influence group behavior more than those on the social periphery. PLoS One 8:e55503PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Manabe K, Dooling RJ, Takaku S (2013) Differential reinforcement of an approach response in zebrafish (Danio rerio). Behav Process. doi: pii: S0376-6357(13)00111-3Google Scholar
  10. 10.
    Ahmed H, Du SJ, Vasta GR (2009) Knockdown of a galectin-1-like protein in zebrafish (Danio rerio) causes defects in skeletal muscle development. Glycoconj J 26:277–283PubMedCrossRefGoogle Scholar
  11. 11.
    Ahmed H, Vasta GR (2008) Unlike mammalian GRIFIN, the zebrafish homologue (DrGRIFIN) represents a functional carbohydrate-binding galectin. Biochem Biophys Res Commun 371:350–355PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Vasta GR, Ahmed H, Du S, Henrikson D (2004) Galectins in teleost fish: Zebrafish (Danio rerio) as a model species to address their biological roles in development and innate immunity. Glycoconj J 21:503–521PubMedCrossRefGoogle Scholar
  13. 13.
    Taylor ME, Drickamer K (2003) Structure-function analysis of C-type animal lectins. Methods Enzymol 363:3–16PubMedCrossRefGoogle Scholar
  14. 14.
    Vasta GR, Ahmed H, Tasumi S, Odom EW, Saito K (2007) Biological roles of lectins in innate immunity: molecular and structural basis for diversity in self/non-self recognition. Adv Exp Med Biol 598:389–406PubMedCrossRefGoogle Scholar
  15. 15.
    Karlsson A, Christenson K, Matlak M, Bjorstad A, Brown KL, Telemo E, Salomonsson E, Leffler H, Bylund J (2009) Galectin-3 functions as an opsonin and enhances the macrophage clearance of apoptotic neutrophils. Glycobiology 19:16–20PubMedCrossRefGoogle Scholar
  16. 16.
    Vasta GR (2009) Roles of galectins in infection. Nat Rev Microbiol 7:424–438PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Davicino RC, Elicabe RJ, Di Genaro MS, Rabinovich GA (2011) Coupling pathogen recognition to innate immunity through glycan-dependent mechanisms. Int Immunopharmacol 11:1457–1463PubMedCrossRefGoogle Scholar
  18. 18.
    Rabinovich GA, Toscano MA, Jackson SS, Vasta GR (2007) Functions of cell surface galectin-glycoprotein lattices. Curr Opin Struct Biol 17:513–520PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Guha P, Kaptan E, Bandyopadhyaya G, Kaczanowska S, Davila E, Thompson K, Martin SS, Kalvakolanu DV, Vasta GR, Ahmed H (2013) Cod glycopeptide with picomolar affinity to galectin-3 suppresses T-cell apoptosis and prostate cancer metastasis. Proc Natl Acad Sci U S A 110:5052–5057PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Ahmed H, Fink NE, Vasta GR (1994) Elasmobranch and teleost fish contain thiol-dependent beta-galactoside-binding lectins that are cross-reactive with those identified and characterized in bovine spleen. Ann N Y Acad Sci 712:318–320PubMedCrossRefGoogle Scholar
  21. 21.
    Muramoto K, Kagawa D, Sato T, Ogawa T, Nishida Y, Kamiya H (1999) Functional and structural characterization of multiple galectins from the skin mucus of conger eel, Conger myriaster. Comp Biochem Physiol B Biochem Mol Biol 123:33–45PubMedCrossRefGoogle Scholar
  22. 22.
    Inagawa H, Kuroda A, Nishizawa T, Honda T, Ototake M, Yokomizo U, Nakanishi T, Soma G (2001) Cloning and characterisation of tandem-repeat type galectin in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 11:217–231PubMedCrossRefGoogle Scholar
  23. 23.
    Ahmed H, Du SJ, O’Leary N, Vasta GR (2004) Biochemical and molecular characterization of galectins from zebrafish (Danio rerio): notochord-specific expression of a prototype galectin during early embryogenesis. Glycobiology 14:219–232PubMedCrossRefGoogle Scholar
  24. 24.
    Halloran MC, Sato-Maeda M, Warren JT, Su F, Lele Z, Krone PH, Kuwada JY, Shoji W (2000) Laser-induced gene expression in specific cells of transgenic zebrafish. Development 127:1953–1960PubMedGoogle Scholar
  25. 25.
    Tallafuss A, Gibson D, Morcos P, Li Y, Seredick S, Eisen J, Washbourne P (2012) Turning gene function ON and OFF using sense and antisense photo-morpholinos in zebrafish. Development 139:1691–1699PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Nasevicius A, Ekker SC (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26:216–220PubMedCrossRefGoogle Scholar
  27. 27.
    Morcos PA (2007) Achieving targeted and quantifiable alteration of mRNA splicing with Morpholino oligos. Biochem Biophys Res Commun 358:521–527PubMedCrossRefGoogle Scholar
  28. 28.
    Benato F, Skobo T, Gioacchini G, Moro I, Ciccosanti F, Piacentini M, Fimia GM, Carnevali O, Dalla Valle L (2013) Ambra1 knockdown in zebrafish leads to incomplete development due to severe defects in organogenesis. Autophagy 9:476–495PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821PubMedCrossRefGoogle Scholar
  30. 30.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Summerton J (1999) Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta 1489:141–158PubMedCrossRefGoogle Scholar
  34. 34.
    McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotechnol 18:455–457PubMedCrossRefGoogle Scholar
  35. 35.
    Wienholds E, van Eeden F, Kosters M, Mudde J, Plasterk RH, Cuppen E (2003) Efficient target-selected mutagenesis in zebrafish. Genome Res 13:2700–2707PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Hardy ME, Ross LV, Chien CB (2007) Focal gene misexpression in zebrafish embryos induced by local heat shock using a modified soldering iron. Dev Dynam 236:3071–3076CrossRefGoogle Scholar
  37. 37.
    Curado S, Anderson RM, Jungblut B, Mumm J, Schroeter E, Stainier DY (2007) Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev Dynam 236:1025–1035CrossRefGoogle Scholar
  38. 38.
    Ekker SC (2008) Zinc finger-based knockout punches for zebrafish genes. Zebrafish 5:121–123PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Scheer N, Campos-Ortega JA (1999) Use of the Gal4-UAS technique for targeted gene expression in the zebrafish. Mech Dev 80:153–158PubMedCrossRefGoogle Scholar
  40. 40.
    Scott EK (2009) The Gal4/UAS toolbox in zebrafish: new approaches for defining behavioral circuits. J Neurochem 110:441–456PubMedCrossRefGoogle Scholar
  41. 41.
    Clark KJ, Voytas DF, Ekker SC (2011) A TALE of two nucleases: gene targeting for the masses? Zebrafish 8:147–149PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Chiguang Feng
    • 1
  • Mihai Nita-Lazar
    • 1
  • Nuria González-Montalbán
    • 1
  • Jingyu Wang
    • 1
  • Justin Mancini
    • 1
  • Chinnarajan Ravindran
    • 1
    • 2
    • 3
  • Hafiz Ahmed
    • 2
    • 4
  • Gerardo R. Vasta
    • 1
    • 2
    Email author
  1. 1.Department of Microbiology and Immunology, School of MedicineUniversity of MarylandBaltimoreUSA
  2. 2.Institute of Marine and Environmental TechnologyBaltimoreUSA
  3. 3.Department of Marine BiotechnologyNational Institute of OceanographyDona PaulaIndia
  4. 4.Department of Biochemistry, School of MedicineUniversity of MarylandBaltimoreUSA

Personalised recommendations