Advertisement

Galectins pp 231-248 | Cite as

Examination of the Role of Galectins in Intestinal Inflammation

  • Atsushi Nishida
  • Cindy W. Lau
  • Atsushi MizoguchiEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1207)

Abstract

The intestine, which provides the first line of defense against over trillion of enteric microorganisms, suffers from broad range of inflammatory conditions caused by infectious, autoimmune, allergic, neurological, and ischemic mechanisms. Recent data have suggested dual roles (protective versus deleterious) for galectins in the pathogenesis of some intestinal inflammations, highlighting the importance of this area of research. A potential problem with the research of intestinal inflammation may be the requirement of some unique techniques. Therefore, we herein describe how to induce intestinal inflammation and how to isolate lymphocyte, myeloid cell, follicular cell, and epithelial cell populations separately from the intestine for the study of intestinal inflammations.

Key words

Colitis Epithelial cell isolation Galectins Inflammatory Bowel Disease Lamina propria cell isolation Mouse models 

Notes

Acknowledgements

This study has been supported primarily by NIH RO1DK064351 and partially by NIH RO1AI081807 and RO1DK091247.

References

  1. 1.
    Xavier RJ, Podolsky DK (2007) Unravelling the pathogenesis of inflammatory bowel disease. Nature 448:427–434PubMedCrossRefGoogle Scholar
  2. 2.
    Kaser A, Zeissig S, Blumberg RS (2010) Inflammatory bowel disease. Annu Rev Immunol 28:573–621PubMedCrossRefGoogle Scholar
  3. 3.
    Plevy SE, Targan SR (2011) Future therapeutic approaches for inflammatory bowel diseases. Gastroenterology 140:1838–1846PubMedCrossRefGoogle Scholar
  4. 4.
    Colgan SP, Eltzschig HK (2012) Adenosine and hypoxia-inducible factor signaling in intestinal injury and recovery. Annu Rev Physiol 74:153–175PubMedCrossRefGoogle Scholar
  5. 5.
    Abadie V, Sollid LM, Barreiro LB et al (2011) Integration of genetic and immunological insights into a model of celiac disease pathogenesis. Annu Rev Immunol 29:493–525PubMedCrossRefGoogle Scholar
  6. 6.
    Rabinowitz K, Mayer L (2012) Working out mechanisms of controlled/physiologic inflammation in the GI tract. Immunol Res 54:14–24PubMedCrossRefGoogle Scholar
  7. 7.
    Rabinovich GA, Toscano MA (2009) Turning ‘sweet’ on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nat Rev Immunol 5:338–352CrossRefGoogle Scholar
  8. 8.
    Baum LG, Crocker PR (2009) Glycoimmunology: ignore at your peril! Immunol Rev 1:5–8CrossRefGoogle Scholar
  9. 9.
    Cerliani JP, Stowell SR, Mascanfroni ID et al (2011) Expanding the universe of cytokines and pattern recognition receptors: galectins and glycans in innate immunity. J Clin Immunol 31:10–21PubMedCrossRefGoogle Scholar
  10. 10.
    Santucci L, Fiorucci S, Rubinstein N et al (2003) Galectin-1 suppresses experimental colitis in mice. Gastroenterology 124:1381–1394PubMedCrossRefGoogle Scholar
  11. 11.
    Elson CO, Sartor RB, Tennyson GS et al (1995) Experimental models of inflammatory bowel disease. Gastroenterology 109:1344–1367PubMedCrossRefGoogle Scholar
  12. 12.
    Mizoguchi A (2012) Animal models of inflammatory bowel disease. Prog Mol Biol Transl Sci 105:263–320PubMedCrossRefGoogle Scholar
  13. 13.
    Paclik D, Danese S, Berndt U et al (2008) Galectin-4 controls intestinal inflammation by selective regulation of peripheral and mucosal T cell apoptosis and cell cycle. PLoS One 3:e2629PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Paclik D, Berndt U, Guzy C et al (2008) Galectin-2 induces apoptosis of lamina propria T lymphocytes and ameliorates acute and chronic experimental colitis in mice. J Mol Med (Berl) 86:1395–1406CrossRefGoogle Scholar
  15. 15.
    Shi F, Guo X, Jiang X et al (2012) Dysregulated Tim-3 expression and its correlation with imbalanced CD4 helper T cell function in ulcerative colitis. Clin Immunol 145:230–240PubMedCrossRefGoogle Scholar
  16. 16.
    Stowell SR, Arthur CM, Dias-Baruffi M et al (2010) Innate immune lectins kill bacteria expressing blood group antigen. Nat Med 16:295–301PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Braccia A, Villani M, Immerdal L et al (2003) Microvillar membrane microdomains exist at physiological temperature. Role of galectin-4 as lipid raft stabilizer revealed by “superrafts”. J Biol Chem 18:15679–15684CrossRefGoogle Scholar
  18. 18.
    Hokama A, Mizoguchi E, Sugimoto K et al (2004) Induced reactivity of intestinal CD4(+) T cells with an epithelial cell lectin, galectin-4, contributes to exacerbation of intestinal inflammation. Immunity 20:681–693PubMedCrossRefGoogle Scholar
  19. 19.
    Nishida A, Nagahama K, Imaeda H et al (2012) Inducible colitis-associated glycome capable of stimulating the proliferation of memory CD4+ T cells. J Exp Med 209:2383–2394PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Izcue A, Coombes JL, Powrie F (2009) Regulatory lymphocytes and intestinal inflammation. Annu Rev Immunol 27:313–338PubMedCrossRefGoogle Scholar
  21. 21.
    Shimomura Y, Ogawa A, Kawada M et al (2008) A unique B2 B cell subset in the intestine. J Exp Med 205:1343–1355PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Sugimoto K, Ogawa A, Mizoguchi E et al (2008) IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest 118:534–544PubMedPubMedCentralGoogle Scholar
  23. 23.
    Mizoguchi E, Xavier RJ, Reinecker HC et al (2003) Colonic epithelial functional phenotype varies with type and phase of experimental colitis. Gastroenterology 125:148–161PubMedCrossRefGoogle Scholar
  24. 24.
    Mizoguchi A, Ogawa A, Takedatsu H et al (2007) Dependence of intestinal granuloma formation on unique myeloid DC-like cells. J Clin Invest 117:605–615PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Mizoguchi A, Mizoguchi E, Chiba C et al (1996) Role of appendix in the development of inflammatory bowel disease in TCR-alpha mutant mice. J Exp Med 184:707–715PubMedCrossRefGoogle Scholar
  26. 26.
    Araki Y, Mukaisyo K, Sugihara H et al (2008) Decomposition of dextran sulfate sodium under alkaline, acidic, high temperature and high pressure conditions. Oncol Rep 20:147–149PubMedGoogle Scholar
  27. 27.
    Dieleman LA, Ridwan BU, Tennyson GS et al (1994) Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice. Gastroenterology 107:1643–1652PubMedGoogle Scholar
  28. 28.
    Wirtz S, Neufert C, Weigmann B et al (2007) Chemically induced mouse models of intestinal inflammation. Nat Protoc 2:541–546PubMedCrossRefGoogle Scholar
  29. 29.
    Maeda S, Hsu LC, Liu H et al (2005) Nod2 mutation in Crohn’s disease potentiates NF-kappaB activity and IL-1beta processing. Science 307:734–738PubMedCrossRefGoogle Scholar
  30. 30.
    Nishida A, Lau CW, Zhang M et al (2012) The membrane-bound mucin Muc1 regulates T helper 17-cell responses and colitis in mice. Gastroenterology 142:865–874PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Yui S, Nakamura T, Sato T et al (2012) Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat Med 18:618–623PubMedCrossRefGoogle Scholar
  32. 32.
    Saito H, Kanamori Y, Takemori T et al (1998) Generation of intestinal T cells from progenitors residing in gut cryptopatches. Science 280:275–278PubMedCrossRefGoogle Scholar
  33. 33.
    Kweon MN, Yamamoto M, Rennert PD et al (2005) Prenatal blockage of lymphotoxin beta receptor and TNF receptor p55 signaling cascade resulted in the acceleration of tissue genesis for isolated lymphoid follicles in the large intestine. J Immunol 174:4365–4372PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Atsushi Nishida
    • 1
    • 2
  • Cindy W. Lau
    • 1
    • 2
  • Atsushi Mizoguchi
    • 3
    Email author
  1. 1.Molecular Pathology Unit, Center for the Study of Inflammatory Bowel DiseaseMassachusetts General HospitalBostonUSA
  2. 2.Department of PathologyHarvard Medical SchoolBostonUSA
  3. 3.Department of ImmunologyKurume University School of MedicineKurumeJapan

Personalised recommendations