Galectins pp 185-200 | Cite as

Detection of Phosphatidylserine Exposure on Leukocytes Following Treatment with Human Galectins

  • Connie M. Arthur
  • Lilian Cataldi Rodrigues
  • Marcelo Dias Baruffi
  • Harold C. Sullivan
  • Richard D. Cummings
  • Sean R. StowellEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1207)


Cellular turnover represents a fundamental aspect of immunological homeostasis. While many factors appear to regulate leukocyte removal during inflammatory resolution, recent studies suggest that members of the galectin family play a unique role in orchestrating this process. Unlike cellular removal through apoptotic cell death, several members of the galectin family induce surface expression of phosphatidylserine (PS), a phagocytic marker on cells undergoing apoptosis, in the absence of cell death. However, similar to PS on cells undergoing apoptosis, galectin-induced PS exposure sensitizes cells to phagocytic removal. As galectins appear to prepare cells for phagocytic removal without actually inducing apoptotic cell death, this process has recently been coined preaparesis. Given the unique characteristics of galectin-induced PS exposure in the context of preaparesis, we will examine important considerations when evaluating the potential impact of different galectin family members on PS exposure and cell viability.

Key words

Galectin Phosphatidylserine (PS) Inflammatory resolution Leukocyte turnover Preaparesis 



This work was supported in part by grants from the National Blood Foundation, American Society of Hematology and Hemophilia of Georgia to S.R.S.


  1. 1.
    Strasser A, O’Connor L, Dixit VM (2000) Apoptosis signaling. Annu Rev Biochem 69:217–245. doi: 10.1146/annurev.biochem.69.1.217 PubMedCrossRefGoogle Scholar
  2. 2.
    Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116(2):205–219PubMedCrossRefGoogle Scholar
  3. 3.
    Iwai K, Miyawaki T, Takizawa T, Konno A, Ohta K, Yachie A, Seki H, Taniguchi N (1994) Differential expression of bcl-2 and susceptibility to anti-Fas-mediated cell death in peripheral blood lymphocytes, monocytes, and neutrophils. Blood 84(4):1201–1208PubMedGoogle Scholar
  4. 4.
    Cerliani JP, Stowell SR, Mascanfroni ID, Arthur CM, Cummings RD, Rabinovich GA (2011) Expanding the universe of cytokines and pattern recognition receptors: galectins and glycans in innate immunity. J Clin Immunol 31(1):10–21. doi: 10.1007/s10875-010-9494-2 PubMedCrossRefGoogle Scholar
  5. 5.
    Stowell SR, Karmakar S, Stowell CJ, Dias-Baruffi M, McEver RP, Cummings RD (2007) Human galectin-1, -2, and -4 induce surface exposure of phosphatidylserine in activated human neutrophils but not in activated T cells. Blood 109(1):219–227PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Stowell SR, Qian Y, Karmakar S, Koyama NS, Dias-Baruffi M, Leffler H, McEver RP, Cummings RD (2008) Differential roles of galectin-1 and galectin-3 in regulating leukocyte viability and cytokine secretion. J Immunol 180(5):3091–3102PubMedCrossRefGoogle Scholar
  7. 7.
    Stowell SR, Karmakar S, Arthur CM, Ju T, Rodrigues LC, Riul TB, Dias-Baruffi M, Miner J, McEver RP, Cummings RD (2009) Galectin-1 induces reversible phosphatidylserine exposure at the plasma membrane. Mol Biol Cell 20(5):1408–1418. doi: 10.1091/mbc.E08-07-0786 PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RA, Henson PM (2000) A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405(6782):85–90. doi: 10.1038/35011084 PubMedCrossRefGoogle Scholar
  9. 9.
    Stowell SR, Cho M, Feasley CL, Arthur CM, Song X, Colucci JK, Karmakar S, Mehta P, Dias-Baruffi M, McEver RP, Cummings RD (2009) Ligand reduces galectin-1 sensitivity to oxidative inactivation by enhancing dimer formation. J Biol Chem 284(8):4989–4999PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Karmakar S, Stowell SR, Cummings RD, McEver RP (2008) Galectin-1 signaling in leukocytes requires expression of complex-type N-glycans. Glycobiology 18(10):770–778PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6(3):173–182. doi: 10.1038/nri1785 PubMedCrossRefGoogle Scholar
  12. 12.
    Mayadas TN, Cullere X, Lowell CA (2013) The multifaceted functions of neutrophils. Annu Rev Pathol. doi: 10.1146/annurev-pathol-020712-164023 PubMedGoogle Scholar
  13. 13.
    Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB (2013) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. doi: 10.1089/ars.2012.5149 PubMedGoogle Scholar
  14. 14.
    Lagasse E, Weissman IL (1994) bcl-2 inhibits apoptosis of neutrophils but not their engulfment by macrophages. J Exp Med 179(3):1047–1052PubMedCrossRefGoogle Scholar
  15. 15.
    Shi J, Gilbert GE, Kokubo Y, Ohashi T (2001) Role of the liver in regulating numbers of circulating neutrophils. Blood 98(4):1226–1230PubMedCrossRefGoogle Scholar
  16. 16.
    Perillo NL, Pace KE, Seilhamer JJ, Baum LG (1995) Apoptosis of T cells mediated by galectin-1. Nature 378(6558):736–739. doi: 10.1038/378736a0 PubMedCrossRefGoogle Scholar
  17. 17.
    Levi G, Teichberg VI (1981) Isolation and physicochemical characterization of electrolectin, a beta-D-galactoside binding lectin from the electric organ of Electrophorus electricus. J Biol Chem 256(11):5735–5740PubMedGoogle Scholar
  18. 18.
    Cho M, Cummings RD (1995) Galectin-1, a beta-galactoside-binding lectin in Chinese hamster ovary cells. I. Physical and chemical characterization. J Biol Chem 270(10):5198–5206PubMedCrossRefGoogle Scholar
  19. 19.
    Cho M, Cummings RD (1995) Galectin-1, a beta-galactoside-binding lectin in Chinese hamster ovary cells. II. Localization and biosynthesis. J Biol Chem 270(10):5207–5212PubMedCrossRefGoogle Scholar
  20. 20.
    Dias-Baruffi M, Stowell SR, Song SC, Arthur CM, Cho M, Rodrigues LC, Montes MA, Rossi MA, James JA, McEver RP, Cummings RD (2010) Differential expression of immunomodulatory galectin-1 in peripheral leukocytes and adult tissues and its cytosolic organization in striated muscle. Glycobiology 20(5):507–520. doi: 10.1093/glycob/cwp203 PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Cerri DG, Rodrigues LC, Stowell SR, Araujo DD, Coelho MC, Oliveira SR, Bizario JC, Cummings RD, Dias-Baruffi M, Costa MC (2008) Degeneration of dystrophic or injured skeletal muscles induces high expression of Galectin-1. Glycobiology 18(11):842–850PubMedCrossRefGoogle Scholar
  22. 22.
    Zinkernagel RM, Doherty PC (1974) Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248(450):701–702PubMedCrossRefGoogle Scholar
  23. 23.
    Zinkernagel RM, Doherty PC (1997) The discovery of MHC restriction. Immunol Today 18(1):14–17PubMedCrossRefGoogle Scholar
  24. 24.
    Stowell SR, Liepkalns JS, Hendrickson JE, Girard-Pierce KR, Smith NH, Arthur CM, Zimring JC (2013) Antigen modulation confers protection to red blood cells from antibody through fcgamma receptor ligation. J Immunol 191(10):5013–5025. doi: 10.4049/jimmunol.1300885 PubMedCrossRefGoogle Scholar
  25. 25.
    Girard-Pierce KR, Stowell SR, Smith NH, Arthur CM, Sullivan HC, Hendrickson JE, Zimring JC (2013) A novel role for C3 in antibody-induced red blood cell clearance and antigen modulation. Blood 122(10):1793–1801. doi: 10.1182/blood-2013-06-508952 PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Stowell SR, Henry KL, Smith NH, Hudson KE, Halverson GR, Park JC, Bennett AM, Girard-Pierce KR, Arthur CM, Bunting ST, Zimring JC, Hendrickson JE (2013) Alloantibodies to a paternally derived RBC KEL antigen lead to hemolytic disease of the fetus/newborn in a murine model. Blood 122(8):1494–1504. doi: 10.1182/blood-2013 -03-488874 PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Liepkalns JS, Hod EA, Stowell SR, Cadwell CM, Spitalnik SL, Zimring JC (2012) Biphasic clearance of incompatible red blood cells through a novel mechanism requiring neither complement nor Fcgamma receptors in a murine model. Transfusion 52(12):2631–2645. doi: 10.1111/j.1537-2995.2012.03647.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Connie M. Arthur
    • 1
  • Lilian Cataldi Rodrigues
    • 2
  • Marcelo Dias Baruffi
    • 2
  • Harold C. Sullivan
    • 1
  • Richard D. Cummings
    • 3
  • Sean R. Stowell
    • 4
    Email author
  1. 1.The Department of Pathology and Laboratory MedicineEmory University School of MedicineAtlantaUSA
  2. 2.Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Clinical, Toxicological and Bromatological AnalysisUniversity of Sao PauloRibeirão Preto-SBrazil
  3. 3.Department of BiochemistryEmory University School of MedicineAtlantaUSA
  4. 4.Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory MedicineEmory University School of MedicineAtlantaUSA

Personalised recommendations