Skip to main content

Sequence-Defined Oligoaminoamides for the Delivery of siRNAs

  • Protocol
  • First Online:
Regulatory Non-Coding RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1206))

Abstract

Since it was found that synthetic small interfering RNA (siRNA) can invoke RNA interference (RNAi) responses in mammalian cells, it has gained enormous attention as a tool for gene silencing in basic science and as a novel therapeutic modality. To develop carriers for cytosolic and systemic siRNA delivery, our laboratory has recently developed a sequence-defined polymer platform compatible with solid-phase-supported synthesis. These polymers have displayed efficient siRNA-mediated gene silencing in vitro and in vivo. In this chapter, we provide a brief background on the special features of these polymers and detailed protocols to evaluate polyplex formation, gene silencing efficiency, and cytotoxicity of siRNA-containing polyplexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fire A et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  2. Elbashir SM et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  PubMed  CAS  Google Scholar 

  3. Castanotto D, Rossi JJ (2009) The promises and pitfalls of RNA-interference-based therapeutics. Nature 457:426–433

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Kanasty RL et al (2012) Action and reaction: the biological response to siRNA and its delivery vehicles. Mol Ther 20:513–524

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Wagner E (2013) Biomaterials in RNAi therapeutics: quo vadis? Biomater Sci 1:804–809

    Article  CAS  Google Scholar 

  6. Burnett JC, Rossi JJ (2012) RNA-based therapeutics: current progress and future prospects. Chem Biol 19:60–71

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Dohmen C et al (2012) Nanosized multifunctional polyplexes for receptor-mediated siRNA delivery. ACS Nano 6:5198–5208

    Article  PubMed  CAS  Google Scholar 

  8. Singh S, Sharma A, Robertson GP (2012) Realizing the clinical potential of cancer nanotechnology by minimizing toxicologic and targeted delivery concerns. Cancer Res 72:5663–5668

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Schaffert D et al (2011) Solid-phase synthesis of sequence-defined T-, i-, and U-shape polymers for pDNA and siRNA delivery. Angew Chem Int Ed Engl 50:8986–8989

    Article  PubMed  CAS  Google Scholar 

  10. Frohlich T et al (2012) Structure-activity relationships of siRNA carriers based on sequence-defined oligo (ethane amino) amides. J Control Release 160:532–541

    Article  PubMed  Google Scholar 

  11. Troiber C et al (2013) Stabilizing effect of tyrosine trimers on pDNA and siRNA polyplexes. Biomaterials 34:1624–1633

    Article  PubMed  CAS  Google Scholar 

  12. Edinger D et al (2013) Gene silencing and antitumoral effects of Eg5 or Ran siRNA oligoaminoamide polyplexes. Drug Deliv Transl Res 4:84–95.

    Article  Google Scholar 

  13. Morille M et al (2008) Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials 29:3477–3496

    Article  PubMed  CAS  Google Scholar 

  14. Edinger D, Wagner E (2011) Bioresponsive polymers for the delivery of therapeutic nucleic acids. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3:33–46

    Article  PubMed  CAS  Google Scholar 

  15. Scholz C, Wagner E (2012) Therapeutic plasmid DNA versus siRNA delivery: common and different tasks for synthetic carriers. J Control Release 161:554–565

    Article  PubMed  CAS  Google Scholar 

  16. Wagner E (2012) Polymers for siRNA delivery: inspired by viruses to be targeted, dynamic, and precise. Acc Chem Res 45:1005–1013

    Article  PubMed  CAS  Google Scholar 

  17. Troiber C et al (2013) Comparison of four different particle sizing methods for siRNA polyplex characterization. Eur J Pharm Biopharm 84:255–264

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Research Foundation grant SFB1032 (project B4) and the excellence cluster Nanosystems Initiative Munich. D.J.L. was supported by the Bavarian Research Foundation PhD Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taavi Lehto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lee, DJ., Wagner, E., Lehto, T. (2015). Sequence-Defined Oligoaminoamides for the Delivery of siRNAs. In: Carmichael, G. (eds) Regulatory Non-Coding RNAs. Methods in Molecular Biology, vol 1206. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1369-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1369-5_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1368-8

  • Online ISBN: 978-1-4939-1369-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics