Skip to main content

Manipulating the Yeast Genome: Deletion, Mutation, and Tagging by PCR

  • Protocol
  • First Online:
Yeast Genetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1205))

Abstract

Saccharomyces cerevisiae is an ideal model eukaryotic system for the systematic analysis of gene function due to the ease and precision with which its genome can be manipulated. The ability of budding yeast to undergo efficient homologous recombination with short stretches of sequence homology has led to an explosion of PCR-based methods to delete and mutate yeast genes and to create fusions to epitope tags and fluorescent proteins. Here, we describe commonly used methods to generate gene deletions, to integrate mutated versions of a gene into the yeast genome, and to construct N- and C-terminal gene fusions. Using a high-efficiency yeast transformation protocol, DNA fragments with as little as 40 bp of homology can accurately target integration into a particular region of the yeast genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rothstein RJ (1983) One-step gene disruption in yeast. Methods Enzymol 101:202–211

    Article  CAS  PubMed  Google Scholar 

  2. Elledge SJ, Davis RW (1988) A family of versatile centromeric vectors designed for use in the sectoring-shuffle mutagenesis assay in Saccharomyces cerevisiae. Gene 70:303–312

    Article  CAS  PubMed  Google Scholar 

  3. Cormack B, Castano I (2002) Introduction of point mutations into cloned genes. Methods Enzymol 350:199–218

    Article  CAS  PubMed  Google Scholar 

  4. Rothstein R (1991) Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol 194:281–301

    Article  CAS  PubMed  Google Scholar 

  5. Wach A, Brachat A, Pohlmann R et al (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808

    Article  CAS  PubMed  Google Scholar 

  6. Goldstein AL, McCusker JH (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15:1541–1553

    Article  CAS  PubMed  Google Scholar 

  7. Gueldener U, Heinisch J, Koehler GJ et al (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30:e23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Wach A, Brachat A, Alberti-Segui C et al (1997) Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in Saccharomyces cerevisiae. Yeast 13:1065–1075

    Article  CAS  PubMed  Google Scholar 

  9. Goldstein AL, Pan X, McCusker JH (1999) Heterologous URA3MX cassettes for gene replacement in Saccharomyces cerevisiae. Yeast 15:507–511

    Article  CAS  PubMed  Google Scholar 

  10. Ito-Harashima S, McCusker JH (2004) Positive and negative selection LYS5MX gene replacement cassettes for use in Saccharomyces cerevisiae. Yeast 21:53–61

    Article  CAS  PubMed  Google Scholar 

  11. Janke C, Magiera MM, Rathfelder N et al (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21:947–962

    Article  CAS  PubMed  Google Scholar 

  12. Longtine MS, McKenzie A 3rd, Demarini DJ et al (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961

    Article  CAS  PubMed  Google Scholar 

  13. Gueldener U, Heck S, Fielder T et al (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–2524

    Article  CAS  Google Scholar 

  14. Delneri D, Tomlin GC, Wixon JL et al (2000) Exploring redundancy in the yeast genome: an improved strategy for use of the cre-loxP system. Gene 252:127–135

    Article  CAS  PubMed  Google Scholar 

  15. Chee MK, Haase SB (2012) New and Redesigned pRS Plasmid Shuttle Vectors for Genetic Manipulation of Saccharomyces cerevisiae. G3 (Bethesda) 2:515–526

    Article  CAS  PubMed Central  Google Scholar 

  16. Sung MK, Ha CW, Huh WK (2008) A vector system for efficient and economical switching of C-terminal epitope tags in Saccharomyces cerevisiae. Yeast 25:301–311

    Article  CAS  PubMed  Google Scholar 

  17. Hegemann JH, Heick SB (2011) Delete and repeat: a comprehensive toolkit for sequential gene knockout in the budding yeast Saccharomyces cerevisiae. Methods Mol Biol 765:189–206

    Article  CAS  PubMed  Google Scholar 

  18. Shoemaker DD, Lashkari DA, Morris D et al (1996) Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy. Nat Genet 14:450–456

    Article  CAS  PubMed  Google Scholar 

  19. Winzeler EA, Shoemaker DD, Astromoff A et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906

    Article  CAS  PubMed  Google Scholar 

  20. Smith AM, Heisler LE, Mellor J et al (2009) Quantitative phenotyping via deep barcode sequencing. Genome Res 19:1836–1842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Smith AM, Durbic T, Kittanakom S et al (2012) Barcode sequencing for understanding drug-gene interactions. Methods Mol Biol 910:55–69

    Article  CAS  PubMed  Google Scholar 

  22. Manivasakam P, Weber SC, McElver J et al (1995) Micro-homology mediated PCR targeting in Saccharomyces cerevisiae. Nucleic Acids Res 23:2799–2800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Hughes TR, Roberts CJ, Dai H et al (2000) Widespread aneuploidy revealed by DNA microarray expression profiling. Nat Genet 25:333–337

    Article  CAS  PubMed  Google Scholar 

  24. Lehner KR, Stone MM, Farber RA et al (2007) Ninety-six haploid yeast strains with individual disruptions of open reading frames between YOR097C and YOR192C, constructed for the Saccharomyces genome deletion project, have an additional mutation in the mismatch repair gene MSH3. Genetics 177:1951–1953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Copic A, Latham CF, Horlbeck MA et al (2012) ER cargo properties specify a requirement for COPII coat rigidity mediated by Sec13p. Science 335:1359–1362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Hartwell LH, Culotti J, Reid B (1970) Genetic control of the cell-division cycle in yeast. I. Detection of mutants. Proc Natl Acad Sci U S A 66:352–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Reid RJ, Lisby M, Rothstein R (2002) Cloning-free genome alterations in Saccharomyces cerevisiae using adaptamer-mediated PCR. Methods Enzymol 350:258–277

    Article  CAS  PubMed  Google Scholar 

  28. Langle-Rouault F, Jacobs E (1995) A method for performing precise alterations in the yeast genome using a recycable selectable marker. Nucleic Acids Res 23:3079–3081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Maeder CI, Maier P, Knop M (2007) A guided tour to PCR-based genomic manipulations of S. cerevisiae (PCR-targeting). Methods Microbiol 36:55–78

    Article  CAS  Google Scholar 

  30. Prein B, Natter K, Kohlwein SD (2000) A novel strategy for constructing N-terminal chromosomal fusions to green fluorescent protein in the yeast Saccharomyces cerevisiae. FEBS Lett 485:29–34

    Article  CAS  PubMed  Google Scholar 

  31. Gauss R, Trautwein M, Sommer T et al (2005) New modules for the repeated internal and N-terminal epitope tagging of genes in Saccharomyces cerevisiae. Yeast 22:1–12

    Article  CAS  PubMed  Google Scholar 

  32. Knop M, Siegers K, Pereira G et al (1999) Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15:963–972

    Article  CAS  PubMed  Google Scholar 

  33. Funakoshi M, Hochstrasser M (2009) Small epitope-linker modules for PCR-based C-terminal tagging in Saccharomyces cerevisiae. Yeast 26:185–192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Van Driessche B, Tafforeau L, Hentges P et al (2005) Additional vectors for PCR-based gene tagging in Saccharomyces cerevisiae and Schizosaccharomyces pombe using nourseothricin resistance. Yeast 22:1061–1068

    Article  PubMed  Google Scholar 

  35. Sheff MA, Thorn KS (2004) Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21:661–670

    Article  CAS  PubMed  Google Scholar 

  36. Tamm T (2009) Plasmids with E2 epitope tags: tagging modules for N- and C-terminal PCR-based gene targeting in both budding and fission yeast, and inducible expression vectors for fission yeast. Yeast 26:55–66

    Article  CAS  PubMed  Google Scholar 

  37. Gadal O, Strauss D, Braspenning J et al (2001) A nuclear AAA-type ATPase (Rix7p) is required for biogenesis and nuclear export of 60S ribosomal subunits. EMBO J 20:3695–3704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Gadal O, Strauss D, Petfalski E et al (2002) Rlp7p is associated with 60S preribosomes, restricted to the granular component of the nucleolus, and required for pre-rRNA processing. J Cell Biol 157:941–951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Lee S, Lim WA, Thorn KA (2013) Improved blue, green, and red fluorescent protein tagging vectors for S. cerevisiae. PLoS One 8:e67902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Schneider BL, Seufert W, Steiner B et al (1995) Use of polymerase chain reaction epitope tagging for protein tagging in Saccharomyces cerevisiae. Yeast 11:1265–1274

    Article  CAS  PubMed  Google Scholar 

  41. Moqtaderi Z, Struhl K (2008) Expanding the repertoire of plasmids for PCR-mediated epitope tagging in yeast. Yeast 25:287–292

    Article  CAS  PubMed  Google Scholar 

  42. Webster TD, Dickson RC (1983) Direct selection of Saccharomyces cerevisiae resistant to the antibiotic G418 following transformation with a DNA vector carrying the kanamycin-resistance gene of Tn903. Gene 26:243–252

    Article  CAS  PubMed  Google Scholar 

  43. Brachmann CB, Davies A, Cost GJ et al (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132

    Article  CAS  PubMed  Google Scholar 

  44. Wieczorke R, Krampe S, Weierstall T et al (1999) Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 464:123–128

    Article  CAS  PubMed  Google Scholar 

  45. Baudin A, Ozier-Kalogeropoulos O, Denouel A et al (1993) A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res 21:3329–3330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Johnston M, Riles L, Hegemann JH (2002) Gene disruption. Methods Enzymol 350:290–315

    Article  CAS  PubMed  Google Scholar 

  47. Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96

    Article  CAS  PubMed  Google Scholar 

  48. Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272

    Article  CAS  PubMed  Google Scholar 

  49. Slaughter BD, Schwartz JW, Li R (2007) Mapping dynamic protein interactions in MAP kinase signaling using live-cell fluorescence fluctuation spectroscopy and imaging. Proc Natl Acad Sci U S A 104:20320–20325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Onischenko E, Stanton LH, Madrid AS et al (2009) Role of the Ndc1 interaction network in yeast nuclear pore complex assembly and maintenance. J Cell Biol 185:475–491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Hailey DW, Davis TN, Muller EG (2002) Fluorescence resonance energy transfer using color variants of green fluorescent protein. Methods Enzymol 351:34–49

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to participants of the Cold Spring Harbor Yeast Genetics and Genomics Course for their insights into yeast cell manipulation. We thank members of the Jaspersen lab for comments on the manuscript. S.L.J. is supported by the Stowers Institute for Medical Research and the American Cancer Society (RSG-11-030-01-CSM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sue L. Jaspersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gardner, J.M., Jaspersen, S.L. (2014). Manipulating the Yeast Genome: Deletion, Mutation, and Tagging by PCR. In: Smith, J., Burke, D. (eds) Yeast Genetics. Methods in Molecular Biology, vol 1205. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1363-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1363-3_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1362-6

  • Online ISBN: 978-1-4939-1363-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics