Skip to main content

Replicative Life Span Analysis in Budding Yeast

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1205))

Abstract

Identifying and characterizing the factors that modulate longevity is central to understanding the basic mechanisms of aging. Among model organisms used for research related to aging, the budding yeast has proven to be an important system for defining pathways that influence life span. Replicative life span is defined by the number of daughter cells a mother cell can produce before senescing. Over the past 10 years, we have performed replicative life span analysis on several thousand yeast strains, identifying several hundred genes that influence replicative longevity. In this chapter we describe our method for determining replicative life span. Individual cells are grown on solid media and monitored from their initial undivided state until they undergo senescence. Daughter cells are manually removed using a fiber optic needle and quantified to determine the total number of times each mother cell divides.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mortimer RK, Johnston JR (1959) Life span of individual yeast cells. Nature 183:1751–1752

    Article  PubMed  CAS  Google Scholar 

  2. Kaeberlein M (2010) Lessons on longevity from budding yeast. Nature 464:513–519

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Steinkraus KA, Kaeberlein M, Kennedy BK (2008) Replicative aging in yeast: the means to the end. Annu Rev Cell Dev Biol 24:29–54

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Fabrizio P, Longo VD (2003) The chronological life span of Saccharomyces cerevisiae. Aging Cell 2:73–81

    Article  PubMed  CAS  Google Scholar 

  5. Fabrizio P, Longo VD (2007) The chronological life span of Saccharomyces cerevisiae. Meth Mol Biol 371:89–95

    Article  CAS  Google Scholar 

  6. Steffen KK, Kennedy BK, Kaeberlein M (2009) Measuring replicative life span in the budding yeast. J Vis Exp (28). doi: 1209 [pii] 10.3791/1209

  7. D’Mello NP, Childress AM, Franklin DS et al (1994) Cloning and characterization of LAG1, a longevity-assurance gene in yeast. J Biol Chem 269:15451–15459

    PubMed  Google Scholar 

  8. Laun P, Pichova A, Madeo F et al (2001) Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol Microbiol 39:1166–1173

    Article  PubMed  CAS  Google Scholar 

  9. Lesur I, Campbell JL (2004) The transcriptome of prematurely aging yeast cells is similar to that of telomerase-deficient cells. Mol Biol Cell 15:1297–1312

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Lindstrom DL, Gottschling DE (2009) The mother enrichment program: a genetic system for facile replicative life span analysis in Saccharomyces cerevisiae. Genetics 183:413–422

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Kaeberlein M, Kennedy BK (2005) Large-scale identification in yeast of conserved aging genes. Mech Ageing Dev 126:17–21

    Article  PubMed  CAS  Google Scholar 

  12. Kaeberlein M, Powers RW 3rd, Steffen KK et al (2005) Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310:1193–1196

    Article  PubMed  CAS  Google Scholar 

  13. Smith ED, Tsuchiya M, Fox LA et al (2008) Quantitative evidence for conserved longevity pathways between divergent eukaryotic species. Genome Res 18:564–570

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Kaeberlein M, Kirkland KT, Fields S et al (2004) Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol 2:E296

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kaeberlein M, Kirkland KT, Fields S et al (2005) Genes determining replicative life span in a long-lived genetic background. Mech Ageing Dev 126:491–504

    Article  PubMed  CAS  Google Scholar 

  16. Steffen KK, MacKay VL, Kerr EO et al (2008) Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4. Cell 133(2):292–302

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Managbanag JR, Witten TM, Bonchev D et al (2008) Shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity. PloS one 3:e3802

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant R01AG039390 to MK. GLS and JRD were supported by NIH Training Grant T32AG000057. MK is an Ellison Medical Foundation New Scholar in Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt Kaeberlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sutphin, G.L., Delaney, J.R., Kaeberlein, M. (2014). Replicative Life Span Analysis in Budding Yeast. In: Smith, J., Burke, D. (eds) Yeast Genetics. Methods in Molecular Biology, vol 1205. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1363-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1363-3_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1362-6

  • Online ISBN: 978-1-4939-1363-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics