Skip to main content

A User’s Guide to the Ribosomal DNA in Saccharomyces cerevisiae

  • Protocol
  • First Online:
Yeast Genetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1205))

Abstract

Messenger RNA synthesis (mRNA) accounts for a small fraction of total RNA synthesis in growing eukaryotic cells. The bulk of cellular transcription is devoted to ribosomal RNA (rRNA) synthesis (Warner, Trends Biochem Sci 24:437–440, 1999). Several unique characteristics of the rDNA and RNA polymerase I must be considered in order to accurately quantify the synthesis rate of rRNA or to characterize its processing. Indeed, an entirely different set of techniques must be applied to the study of rRNA synthesis than is routinely to study mRNA synthesis. Five of the most useful strategies for genetic and molecular analysis of rRNA synthesis and regulation are outlined in this chapter. The techniques described were developed for characterization of the model eukaryote Saccharomyces cerevisiae; however, many of these strategies can be adapted for studies in other eukaryotic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Larson DR, Zenklusen D, Wu B et al (2011) Real-time observation of transcription initiation and elongation on an endogenous yeast gene. Science 332:475–478

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Kobayashi T, Heck DJ, Nomura M et al (1998) Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. Genes Dev 12:3821–3830

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Clemente-Blanco A, Mayan-Santos M, Schneider DA et al (2009) Cdc14 inhibits transcription by RNA polymerase I during anaphase. Nature 458:219–222

    Article  PubMed  CAS  Google Scholar 

  4. Anderson SJ, Sikes ML, Zhang Y et al (2011) The transcription elongation factor Spt5 influences transcription by RNA polymerase I positively and negatively. J Biol Chem 286: 18816–18824

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Zhang Y, Smith AD IV, Renfrow MB et al (2010) The RNA polymerase-associated factor 1 complex (Paf1C) directly increases the elongation rate of RNA polymerase I and is required for efficient regulation of rRNA synthesis. J Biol Chem 285:14152–14159

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Schneider DA, French SL, Osheim YN et al (2006) RNA polymerase II elongation factors Spt4p and Spt5p play roles in transcription elongation by RNA polymerase I and rRNA processing. Proc Natl Acad Sci U S A 103: 12707–12712

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Conconi A, Widmer RM, Koller T et al (1989) Two different chromatin structures coexist in ribosomal RNA genes throughout the cell cycle. Cell 57:753–761

    Article  PubMed  CAS  Google Scholar 

  8. Dammann R, Lucchini R, Koller T et al (1993) Chromatin structures and transcription of rDNA in yeast Saccharomyces cerevisiae. Nucleic Acids Res 21:2331–2338

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Sandmeier JJ, French SL, Osheim YN et al (2002) RPD3 is required for the inactivation of yeast ribosomal DNA genes in stationary phase. EMBO J 21:4959–4968

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Nogi Y, Vu L, Nomura M (1991) An approach for isolation of mutants defective in 35S ribosomal RNA synthesis in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 88:7026–7030

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Nogi Y, Yano R, Nomura M (1991) Synthesis of large rRNAs by RNA polymerase II in mutants of Saccharomyces cerevisiae defective in RNA polymerase I. Proc Natl Acad Sci U S A 88:3962–3966

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Hontz RD, Niederer RO, Johnson JM et al (2009) Genetic identification of factors that modulate ribosomal DNA transcription in Saccharomyces cerevisiae. Genetics 182:105–119

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Osheim YN, French SL, Sikes ML et al (2009) Electron microscope visualization of RNA transcription and processing in Saccharomyces cerevisiae by Miller chromatin spreading. Methods Mol Biol 464:55–69

    Article  PubMed  Google Scholar 

  14. Warner JR (1999) The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 24: 437–440

    Article  PubMed  CAS  Google Scholar 

  15. Cioci F, Vu L, Eliason K et al (2003) Silencing in yeast rDNA chromatin: reciprocal relationship in gene expression between RNA polymerase I and II. Mol Cell 12:135–145

    Article  PubMed  CAS  Google Scholar 

  16. Schneider DA, Michel A, Sikes ML et al (2007) Transcription elongation by RNA polymerase I is linked to efficient rRNA processing and ribosome assembly. Mol Cell 26:217–229

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Hontz RD, French SL, Oakes ML et al (2008) Transcription of multiple yeast ribosomal DNA genes requires targeting of UAF to the promoter by Uaf30. Mol Cell Biol 28:6709–6719

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Oakes M, Aris JP, Brockenbrough JS et al (1998) Mutational analysis of the structure and localization of the nucleolus in the yeast Saccharomyces cerevisiae. J Cell Biol 143:23–34

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Schneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Johnson, J.M., Smith, J.S., Schneider, D.A. (2014). A User’s Guide to the Ribosomal DNA in Saccharomyces cerevisiae . In: Smith, J., Burke, D. (eds) Yeast Genetics. Methods in Molecular Biology, vol 1205. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1363-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1363-3_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1362-6

  • Online ISBN: 978-1-4939-1363-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics