Skip to main content

Global Analysis of Transcription Factor-Binding Sites in Yeast Using ChIP-Seq

  • Protocol
  • First Online:
Yeast Genetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1205))

Abstract

Transcription factors influence gene expression through their ability to bind DNA at specific regulatory elements. Specific DNA-protein interactions can be isolated through the chromatin immunoprecipitation (ChIP) procedure, in which DNA fragments bound by the protein of interest are recovered. ChIP is followed by high-throughput DNA sequencing (Seq) to determine the genomic provenance of ChIP DNA fragments and their relative abundance in the sample. This chapter describes a ChIP-Seq strategy adapted for budding yeast to enable the genome-wide characterization of binding sites of transcription factors (TFs) and other DNA-binding proteins in an efficient and cost-effective way.

Yeast strains with epitope-tagged TFs are most commonly used for ChIP-Seq, along with their matching untagged control strains. The initial step of ChIP involves the cross-linking of DNA and proteins. Next, yeast cells are lysed and sonicated to shear chromatin into smaller fragments. An antibody against an epitope-tagged TF is used to pull down chromatin complexes containing DNA and the TF of interest. DNA is then purified and proteins degraded. Specific barcoded adapters for multiplex DNA sequencing are ligated to ChIP DNA. Short DNA sequence reads (28–36 base pairs) are parsed according to the barcode and aligned against the yeast reference genome, thus generating a nucleotide-resolution map of transcription factor-binding sites and their occupancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Costanzo MC, Hogan JD, Cusick ME et al (2000) The yeast proteome database (YPD) and Caenorhabditis elegans proteome database (WormPD): comprehensive resources for the organization and comparison of model organism protein information. Nucleic Acids Res 28:73–76

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Prakash A, Tompa M (2009) Assessing the discordance of multiple sequence alignments. IEEE/ACM Trans Comput Biol Bioinform 6: 542–551

    Article  PubMed  CAS  Google Scholar 

  3. Borneman AR, Gianoulis TA, Zhang ZD et al (2007) Divergence of transcription factor binding sites across related yeast species. Science 317:815–819

    Article  PubMed  CAS  Google Scholar 

  4. Gilmour DS, Lis JT (1984) Detecting protein-DNA interactions in vivo: distribution of RNA polymerase on specific bacterial genes. Proc Natl Acad Sci U S A 81:4275–4279

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Orlando V, Strutt H, Paro R (1997) Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods 11:205–214

    Article  PubMed  CAS  Google Scholar 

  6. Horak CE, Snyder M (2002) ChIP-chip: a genomic approach for identifying transcription factor binding sites. Methods Enzymol 350: 469–483

    Article  PubMed  CAS  Google Scholar 

  7. Harbison C, Gordon DB, Lee TI et al (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431:99–104

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Johnson DS, Mortazavi A, Myers RM et al (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316:1497–1502

    Article  PubMed  CAS  Google Scholar 

  9. Robertson G, Hirst M, Bainbridge M et al (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4:651–657

    Article  PubMed  CAS  Google Scholar 

  10. Euskirchen GM, Rozowsky JS, Wei CL et al (2007) Mapping of transcription factor binding regions in mammalian cells by ChIP: comparison of array- and sequencing-based technologies. Genome Res 17:898–909

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Birney E, Stamatoyannopoulos JA, Dutta A et al (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447: 799–816

    Article  PubMed  CAS  Google Scholar 

  12. Celniker SE, Dillon LA, Gerstein MB et al (2009) Unlocking the secrets of the genome. Nature 459:927–930

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Lefrancois P, Euskirchen GM, Auerbach RK et al (2009) Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing. BMC Genomics 10:37

    Article  PubMed  PubMed Central  Google Scholar 

  14. Teytelman L, Ozaydin B, Zill O et al (2009) Impact of chromatin structures on DNA processing for genomic analyses. PLoS One 4:e6700

    Article  PubMed  PubMed Central  Google Scholar 

  15. Auerbach RK, Euskirchen G, Rozowsky J et al (2009) Mapping accessible chromatin regions using Sono-Seq. Proc Natl Acad Sci U S A 106:14926–14931

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Preti M, Ribeyre C, Pascali C et al (2010) The telomere-binding protein Tbf1 demarcates snoRNA gene promoters in Saccharomyces cerevisiae. Mol Cell 38:614–620

    Article  PubMed  CAS  Google Scholar 

  17. Huber A, French SL, Tekotte H et al (2011) Sch9 regulates ribosome biogenesis via Stb3, Dot6 and Tod6 and the histone deacetylase complex RPD3L. EMBO J 30:3052–3064

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Zill OA, Scannell D, Teytelman L et al (2010) Co-evolution of transcriptional silencing proteins and the DNA elements specifying their assembly. PLoS Biol 8:e1000550

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. van Dijk EL, Chen CL, d’Aubenton-Carafa Y et al (2011) XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast. Nature 475:114–117

    Article  PubMed  Google Scholar 

  20. Batta K, Zhang Z, Yen K et al (2011) Genome-wide function of H2B ubiquitylation in promoter and genic regions. Genes Dev 25: 2254–2265

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Zhou X, O’Shea EK (2011) Integrated approaches reveal determinants of genome-wide binding and function of the transcription factor Pho4. Mol Cell 42:826–836

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Cai L, Sutter BM, Li B et al (2011) Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol Cell 42:426–437

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Eaton ML, Galani K, Kang S et al (2010) Conserved nucleosome positioning defines replication origins. Genes Dev 24:748–753

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Zheng W, Zhao H, Mancera E et al (2010) Genetic analysis of variation in transcription factor binding in yeast. Nature 464: 1187–1191

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Haynes BC, Skowyra ML, Spencer SJ et al (2011) Toward an integrated model of capsule regulation in Cryptococcus neoformans. PLoS Pathog 7:e1002411

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Smith KM, Phatale PA, Sullivan CM et al (2011) Heterochromatin is required for normal distribution of Neurospora crassa CenH3. Mol Cell Biol 31:2528–2542

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Venters BJ, Wachi S, Mavrich TN et al (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41:480–492

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669–680

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18:1851–1858

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Li R, Li Y, Kristiansen K et al (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714

    Article  PubMed  CAS  Google Scholar 

  31. Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Nicol JW, Helt GA, Blanchard SG Jr et al (2009) The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets. Bioinformatics 25:2730–2731

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Wilbanks EG, Facciotti MT (2010) Evaluation of algorithm performance in ChIP-seq peak detection. PLoS One 5:e11471

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rozowsky J, Euskirchen G, Auerbach RK et al (2009) PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nat Biotechnol 27:66–75

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Euskirchen GM, Auerbach RK, Davidov E et al (2011) Diverse roles and interactions of the SWI/SNF chromatin remodeling complex revealed using global approaches. PLoS Genet 7:e1002008

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Zhu LJ, Gazin C, Lawson ND et al (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinformatics 11:237

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ji H, Jiang H, Ma W et al (2008) An integrated software system for analyzing ChIP-chip and ChIP-seq data. Nat Biotechnol 26: 1293–1300

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Janke C, Magiera MM, Rathfelder N et al (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21:947–962

    Article  PubMed  CAS  Google Scholar 

  40. Pfaffl M (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Quail MA, Kozarewa I, Smith F et al (2008) A large genome center’s improvements to the Illumina sequencing system. Nat Methods 5:1005–1010

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Cronn R, Liston A, Parks M et al (2008) Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology. Nucleic Acids Res 36:e122

    Article  PubMed  PubMed Central  Google Scholar 

  43. Craig DW, Pearson JV, Szelinger S et al (2008) Identification of genetic variants using bar-coded multiplexed sequencing. Nat Methods 5:887–893

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Wong KH, Struhl K (2011) The Cyc8-Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein. Genes Dev 25:2525–2539

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Fejes AP, Robertson G, Bilenky M et al (2008) FindPeaks 3.1: a tool for identifying areas of enrichment from massively parallel short-read sequencing technology. Bioinformatics 24: 1729–1730

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Jothi R, Cuddapah S, Barski A et al (2008) Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res 36:5221–5231

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Valouev A, Johnson DS, Sundquist A et al (2008) Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat Methods 5:829–834

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Zhang Y, Liu T, Meyer CA et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nix DA, Courdy SJ, Boucher KM (2008) Empirical methods for controlling false positives and estimating confidence in ChIP-Seq peaks. BMC Bioinformatics 9:523

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mortazavi A, Williams BA, McCue K et al (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  PubMed  CAS  Google Scholar 

  51. Kharchenko PV, Tolstorukov MY, Park PJ (2008) Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat Biotechnol 26:1351–1359

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Qin ZS, Yu J, Shen J et al (2010) HPeak: an HMM-based algorithm for defining read-enriched regions in ChIP-Seq data. BMC Bioinformatics 11:369

    Article  PubMed  PubMed Central  Google Scholar 

  53. Blahnik KR, Dou L, O’Geen H et al (2010) Sole-Search: an integrated analysis program for peak detection and functional annotation using ChIP-seq data. Nucleic Acids Res 38:e13

    Article  PubMed  PubMed Central  Google Scholar 

  54. Feng X, Grossman R, Stein L (2011) PeakRanger: a cloud-enabled peak caller for ChIP-seq data. BMC Bioinformatics 12:139

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Snyder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lefrançois, P., Gallagher, J.E.G., Snyder, M. (2014). Global Analysis of Transcription Factor-Binding Sites in Yeast Using ChIP-Seq. In: Smith, J., Burke, D. (eds) Yeast Genetics. Methods in Molecular Biology, vol 1205. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1363-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1363-3_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1362-6

  • Online ISBN: 978-1-4939-1363-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics