Skip to main content

Detection of Short-Range Chromatin Interactions by Chromosome Conformation Capture (3C) in Yeast

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1205))

Abstract

We describe a modified 3C (“chromosome conformation capture”) protocol for detection of transient, short-range chromatin interactions in the yeast Saccharomyces cerevisiae. 3C was initially described by Job Dekker and involves formaldehyde cross-linking to stabilize transient chromatin interactions, followed by restriction digestion, ligation, and locus-specific PCR. As such, 3C reveals complex three-dimensional interactions between distal genetic elements within intact cells at high resolution. Using a modified version of Dekker’s protocol, we are able to detect gene loops that juxtapose promoter and terminator regions of yeast genes with ORFs as short as 1 kb. We are using this technique to define the cis- and trans-acting requirements for the formation and maintenance of gene loops, and to elucidate their physiological consequences. We anticipate that this method will be generally applicable to detect dynamic, short-range chromatin interactions, not limited to gene loops.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Dekker J, Rippe K, Dekker M et al (2002) Capturing chromosome conformation. Science 295:1306–1311

    Article  PubMed  CAS  Google Scholar 

  2. Dostie J, Richmond TA, Arnaout RA et al (2006) Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 16(10):1299–1309

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Dostie J, Dekker J (2007) Mapping networks of physical interactions between genomic elements using 5C technology. Nat Protoc 2: 988–1002

    Article  PubMed  CAS  Google Scholar 

  4. Dostie J, Zhan Y, Dekker J (2007) Chromosome conformation capture carbon copy technology. Curr Protoc Mol Biol Chapter 21:Unit 21 14

    Google Scholar 

  5. Simonis M, Klous P, Splinter E et al (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38:1348–1354

    Article  PubMed  CAS  Google Scholar 

  6. Simonis M, Kooren J, de Laat W (2007) An evaluation of 3C-based methods to capture DNA interactions. Nat Methods 4: 895–901

    Article  PubMed  CAS  Google Scholar 

  7. Zhao Z, Tavoosidana G, Sjölinder M et al (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 38: 1341–1347

    Article  PubMed  CAS  Google Scholar 

  8. Gondor A, Rougier C, Ohlsson R (2008) High-resolution circular chromosome conformation capture assay. Nat Protoc 3:303–313

    Article  PubMed  Google Scholar 

  9. Fullwood MJ, Ruan Y (2009) ChIP-based methods for the identification of long-range chromatin interactions. J Cell Biochem 107: 30–39

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Lieberman-Aiden E, van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Singh BN, Ansari A, Hampsey M (2009) Detection of gene loops by 3C in yeast. Methods 48:361–367

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Ansari A, Hampsey M (2005) A role for the CPF 3′-end processing machinery in RNAP II-dependent gene looping. Genes Dev 19: 2969–2978

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Singh BN, Hampsey M (2007) A transcription-independent role for TFIIB in gene looping. Mol Cell 27:806–816

    Article  PubMed  CAS  Google Scholar 

  14. Laine JP, Singh BN, Krishnamurthy S et al (2009) A physiological role for gene loops in yeast. Genes Dev 23:2604–2609

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Dekker J (2006) The three “C” s of chromosome conformation capture: controls, controls, controls. Nat Methods 3:17–21

    Article  PubMed  CAS  Google Scholar 

  16. Miele A, Gheldof N, Tabuchi TM et al (2006) Mapping chromatin interactions by chromosome conformation capture. Curr Protoc Mol Biol Chapter 21:Unit 21 11

    Google Scholar 

Download references

Acknowledgments

We are grateful to Athar Ansari (Wayne State University) for initially developing the 3C protocol in our laboratory and for his insight into the application of 3C to study gene loops. The work in our laboratory is supported by NIH RO1 grants GM39484 (to M.H.) and GM068887 (to Claire Moore (Tufts Medical School) and M. H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hampsey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Singh, B.N., Hampsey, M. (2014). Detection of Short-Range Chromatin Interactions by Chromosome Conformation Capture (3C) in Yeast. In: Smith, J., Burke, D. (eds) Yeast Genetics. Methods in Molecular Biology, vol 1205. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1363-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1363-3_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1362-6

  • Online ISBN: 978-1-4939-1363-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics