Skip to main content

Phenomic Assessment of Genetic Buffering by Kinetic Analysis of Cell Arrays

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1205))

Abstract

Quantitative high-throughput cell array phenotyping (Q-HTCP) is applied to the genomic collection of yeast gene deletion mutants for systematic, comprehensive assessment of the contribution of genes and gene combinations to any phenotype of interest (phenomic analysis). Interacting gene networks influence every phenotype. Genetic buffering refers to how gene interaction networks stabilize or destabilize a phenotype. Like genomics, phenomics varies in its resolution with there being a trade-off allocating a greater number of measurements per sample to enhance quantification of the phenotype vs. increasing the number of different samples by obtaining fewer measurements per sample. The Q-HTCP protocol we describe assesses 50,000–70,000 cultures per experiment by obtaining kinetic growth curves from time series imaging of agar cell arrays. This approach was developed for the yeast gene deletion strains, but it could be applied as well to other microbial mutant arrays grown on solid agar media. The methods we describe are for creation and maintenance of frozen stocks, liquid source array preparation, agar destination plate printing, image scanning, image analysis, curve fitting, and evaluation of gene interaction.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hartman JL IV, Garvik B, Hartwell L (2001) Principles for the buffering of genetic variation. Science 291:1001–1004

    Article  PubMed  CAS  Google Scholar 

  2. Dixon SJ, Costanzo M, Baryshnikova A et al (2009) Systematic mapping of genetic interaction networks. Annu Rev Genet 43:601–625

    Article  PubMed  CAS  Google Scholar 

  3. Hartman JL IV, Tippery NP (2004) Systematic quantification of gene interactions by phenotypic array analysis. Genome Biol 5:R49

    Article  PubMed  PubMed Central  Google Scholar 

  4. Li Z, Vizeacoumar FJ, Bahr S et al (2011) Systematic exploration of essential yeast gene function with temperature-sensitive mutants. Nat Biotechnol 29:361–367

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Schuldiner M, Collins SR, Thompson NJ et al (2005) Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123:507–519

    Article  PubMed  CAS  Google Scholar 

  6. Tong AH, Evangelista M, Parsons AB et al (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294:2364–2368

    Article  PubMed  CAS  Google Scholar 

  7. Winzeler EA, Shoemaker DD, Astromoff A et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906

    Article  PubMed  CAS  Google Scholar 

  8. St Onge RP, Mani R, Oh J et al (2007) Systematic pathway analysis using high-resolution fitness profiling of combinatorial gene deletions. Nat Genet 39:199–206

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Guo J, Tian D, McKinney BA et al (2010) Recursive expectation-maximization clustering: a method for identifying buffering mechanisms composed of phenomic modules. Chaos 20:026103

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hartwell LH, Hopfield JJ, Leibler S et al (1999) From molecular to modular cell biology. Nature 402:C47–C52

    Article  PubMed  CAS  Google Scholar 

  11. Blomberg A (2011) Measuring growth rate in high-throughput growth phenotyping. Curr Opin Biotechnol 22:94–102

    Article  PubMed  CAS  Google Scholar 

  12. Giaever G, Chu AM, Ni L et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  PubMed  CAS  Google Scholar 

  13. Parsons AB, Brost RL, Ding H et al (2004) Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat Biotechnol 22:62–69

    Article  PubMed  CAS  Google Scholar 

  14. Tong AH, Lesage G, Bader GD et al (2004) Global mapping of the yeast genetic interaction network. Science 303:808–813

    Article  PubMed  CAS  Google Scholar 

  15. Shah NA, Laws RJ, Wardman B et al (2007) Accurate, precise modeling of cell proliferation kinetics from time-lapse imaging and automated image analysis of agar yeast culture arrays. BMC Syst Biol 1:3

    Article  PubMed  PubMed Central  Google Scholar 

  16. Louie RJ, Guo J, Rodgers JW et al (2012) A yeast phenomic model for the gene interaction network modulating CFTR-∆F508 protein biogenesis. Genome Med 4:103

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Mani R, St Onge RP, Hartman JL IV et al (2008) Defining genetic interaction. Proc Natl Acad Sci U S A 105:3461–3466

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Baryshnikova A, Costanzo M, Kim Y et al (2010) Quantitative analysis of fitness and genetic interactions in yeast on a genome scale. Nat Methods 7:1017–1024

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Costanzo M, Baryshnikova A, Bellay J et al (2010) The genetic landscape of a cell. Science 327:425–431

    Article  PubMed  CAS  Google Scholar 

  20. Tong AH, Boone C (2006) Synthetic genetic array analysis in Saccharomyces cerevisiae. Methods Mol Biol 313:171–192

    PubMed  CAS  Google Scholar 

  21. Singh I, Pass R, Togay SO et al (2009) Stringent mating-type-regulated auxotrophy increases the accuracy of systematic genetic interaction screens with Saccharomyces cerevisiae mutant arrays. Genetics 181:289–300

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Hartman JL IV (2007) Buffering of deoxyribonucleotide pool homeostasis by threonine metabolism. Proc Natl Acad Sci U S A 104:11700–11705

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Hartman JL IV (2006) Genetic and molecular buffering of phenotypes. In: Rodriguez R, Kaput J (eds) Nutritional genomics: discovering the path to personalized nutrition. Wiley, Hoboken, NJ, p 496

    Google Scholar 

  24. Collins SR, Schuldiner M, Krogan NJ et al (2006) A strategy for extracting and analyzing large-scale quantitative epistatic interaction data. Genome Biol 7:R63

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lawless C, Wilkinson DJ, Young A et al (2010) Colonyzer: automated quantification of micro-organism growth characteristics on solid agar. BMC Bioinformatics 11:287

    Article  PubMed  PubMed Central  Google Scholar 

  26. Koh JL, Ding H, Costanzo M et al (2009) DRYGIN: a database of quantitative genetic interaction networks in yeast. Nucleic Acids Res 38:D502–D507

    Article  PubMed  PubMed Central  Google Scholar 

  27. Califano A, Butte AJ, Friend S et al (2012) Leveraging models of cell regulation and GWAS data in integrative network-based association studies. Nat Genet 44:841–847

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Burke D, Dawson D, Stearns T (2000) Methods in yeast genetics. CSHL Press, Cold Spring Harbor

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Rodgers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rodgers, J., Guo, J., Hartman, J.L. (2014). Phenomic Assessment of Genetic Buffering by Kinetic Analysis of Cell Arrays. In: Smith, J., Burke, D. (eds) Yeast Genetics. Methods in Molecular Biology, vol 1205. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1363-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1363-3_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1362-6

  • Online ISBN: 978-1-4939-1363-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics