Skip to main content

Nanoparticle-Assisted Laser Desorption/Ionization for Metabolite Imaging

  • Protocol
  • First Online:
Mass Spectrometry Imaging of Small Molecules

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1203))

Abstract

Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) has enabled the spatial analysis of various molecules, including peptides, nucleic acids, lipids, and drug molecules. To expand the capabilities of MALDI-IMS, we have established an imaging technique using metal nanoparticles (NPs) to visualize metabolites, termed nanoparticle-assisted laser desorption/ionization imaging mass spectrometry (nano-PALDI-IMS). By utilizing Ag-, Fe-, Au-, and TiO2-derived NPs, we have succeeded in visualizing various metabolites, including fatty acid and glycosphingolipids, with higher sensitivity and spatial resolution than conventional techniques. Herein, we describe the practical experimental procedures and methods associated with nano-PALDI-IMS for the visualization of these molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwamborn K, Caprioli RM (2010) Molecular imaging by mass spectrometry–looking beyond classical histology. Nat Rev Cancer 10(9):639–646

    Article  PubMed  CAS  Google Scholar 

  2. Stoeckli M, Chaurand P, Hallahan DE et al (2001) Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat Med 7(4):493–496

    Article  PubMed  CAS  Google Scholar 

  3. Saito Y, Waki M, Hameed S et al (2012) Development of imaging mass spectrometry. Biol Pharm Bull 35(9):1417–1424

    PubMed  CAS  Google Scholar 

  4. Shimma S, Sugiura Y, Hayasaka T et al (2008) Mass imaging and identification of biomolecules with MALDI-QIT-TOF-based system. Anal Chem 80(3):878–885

    Article  PubMed  CAS  Google Scholar 

  5. Cornett DS, Reyzer ML, Chaurand P et al (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods 4(10):828–833

    Article  PubMed  CAS  Google Scholar 

  6. Garden RW, Sweedler JV (2000) Heterogeneity within MALDI samples as revealed by mass spectrometric imaging. Anal Chem 72(1):30–36

    Article  PubMed  CAS  Google Scholar 

  7. Northen TR, Yanes O, Northen MT et al (2007) Clathrate nanostructures for mass spectrometry. Nature 449(7165):1033–1036

    Article  PubMed  CAS  Google Scholar 

  8. Cha S, Yeung ES (2007) Colloidal graphite-assisted laser desorption/ionization mass spectrometry and MSn of small molecules. 1. Imaging of cerebrosides directly from rat brain tissue. Anal Chem 79(6):2373–2385

    Article  PubMed  CAS  Google Scholar 

  9. Vidova V, Novak P, Strohalm M et al (2010) Laser desorption-ionization of lipid transfers: tissue mass spectrometry imaging without MALDI matrix. Anal Chem 82(12):4994–4997

    Article  PubMed  CAS  Google Scholar 

  10. Wei J, Buriak JM, Siuzdak G (1999) Desorption-ionization mass spectrometry on porous silicon. Nature 399(6733):243–246

    Article  PubMed  CAS  Google Scholar 

  11. Peterson DS, Luo Q, Hilder EF et al (2004) Porous polymer monolith for surface-enhanced laser desorption/ionization time-of-flight mass spectrometry of small molecules. Rapid Commun Mass Spectrom 18(13):1504–1512

    Article  PubMed  CAS  Google Scholar 

  12. Tanaka K, Waki H, Ido Y et al (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2(8):151–153

    Article  CAS  Google Scholar 

  13. Lin YS, Chen YC (2002) Laser desorption/ionization time-of-flight mass spectrometry on sol-gel-derived 2,5-dihydroxybenzoic acid film. Anal Chem 74(22):5793–5798

    Article  PubMed  CAS  Google Scholar 

  14. Goto-Inoue N, Hayasaka T, Zaima N et al (2010) The detection of glycosphingolipids in brain tissue sections by imaging mass spectrometry using gold nanoparticles. J Am Soc Mass Spectrom 21(11):1940–1943

    PubMed  CAS  Google Scholar 

  15. Hayasaka T, Goto-Inoue N, Zaima N et al (2010) Imaging mass spectrometry with silver nanoparticles reveals the distribution of fatty acids in mouse retinal sections. J Am Soc Mass Spectrom 21(8):1446–1454

    Article  PubMed  CAS  Google Scholar 

  16. Shrivas K, Hayasaka T, Sugiura Y et al (2011) Method for simultaneous imaging of endogenous low molecular weight metabolites in mouse brain using TiO2 nanoparticles in nanoparticle-assisted laser desorption/ionization-imaging mass spectrometry. Anal Chem 83(19):7283–7289

    Article  PubMed  CAS  Google Scholar 

  17. Taira S, Sugiura Y, Moritake S et al (2008) Nanoparticle-assisted laser desorption/ionization based mass imaging with cellular resolution. Anal Chem 80(12):4761–4766

    Article  PubMed  CAS  Google Scholar 

  18. Ageta H, Asai S, Sugiura Y et al (2009) Layer-specific sulfatide localization in rat hippocampus middle molecular layer is revealed by nanoparticle-assisted laser desorption/ionization imaging mass spectrometry. Med Mol Morphol 42(1):16–23

    Article  PubMed  CAS  Google Scholar 

  19. Chiang CK, Chen WT, Chang HT (2011) Nanoparticle-based mass spectrometry for the analysis of biomolecules. Chem Soc Rev 40(3):1269–1281

    Article  PubMed  CAS  Google Scholar 

  20. Armarego WLF, Chai CLL (2003) Purification of laboratory chemicals, 5th edn. Butterworth-Heinemann, Oxford, p 608

    Google Scholar 

  21. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959

    Article  PubMed  CAS  Google Scholar 

  22. Guillou H, Zadravec D, Martin PG et al (2010) The key roles of elongases and desaturases in mammalian fatty acid metabolism: insights from transgenic mice. Prog Lipid Res 49(2):186–199

    Article  PubMed  CAS  Google Scholar 

  23. Thies F, Garry JM, Yaqoob P et al (2003) Association of n-3 polyunsaturated fatty acids with stability of atherosclerotic plaques: a randomised controlled trial. Lancet 361(9356):477–485

    Article  PubMed  CAS  Google Scholar 

  24. Uauy R, Dangour AD (2006) Nutrition in brain development and aging: role of essential fatty acids. Nutr Rev 64(5 Pt 2):S24–S33, discussion S72-91

    Article  PubMed  Google Scholar 

  25. van Meer G, de Kroon AI (2011) Lipid map of the mammalian cell. J Cell Sci 124(Pt 1):5–8

    Article  PubMed  Google Scholar 

  26. Hayasaka T, Goto-Inoue N, Sugiura Y et al (2008) Matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight (MALDI-QIT-TOF)-based imaging mass spectrometry reveals a layered distribution of phospholipid molecular species in the mouse retina. Rapid Commun Mass Spectrom 22(21):3415–3426

    Article  PubMed  CAS  Google Scholar 

  27. Hannun YA, Bell RM (1989) Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science 243(4890):500–507

    Article  PubMed  CAS  Google Scholar 

  28. Hakomori S, Handa K, Iwabuchi K et al (1998) New insights in glycosphingolipid function: "glycosignaling domain," a cell surface assembly of glycosphingolipids with signal transducer molecules, involved in cell adhesion coupled with signaling. Glycobiology 8(10):xi–xix

    Article  PubMed  CAS  Google Scholar 

  29. Furukawa K, Takamiya K, Okada M et al (2001) Novel functions of complex carbohydrates elucidated by the mutant mice of glycosyltransferase genes. Biochim Biophys Acta 1525(1–2):1–12

    Article  PubMed  CAS  Google Scholar 

  30. Sugiura Y, Konishi Y, Zaima N et al (2009) Visualization of the cell-selective distribution of PUFA-containing phosphatidylcholines in mouse brain by imaging mass spectrometry. J Lipid Res 50(9):1776–1788

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Sugiura Y, Setou M (2010) Imaging mass spectrometry for visualization of drug and endogenous metabolite distribution: toward in situ pharmacometabolomes. J Neuroimmune Pharmacol 5(1):31–43

    Article  PubMed  Google Scholar 

  32. Walch A, Rauser S, Deininger SO et al (2008) MALDI imaging mass spectrometry for direct tissue analysis: a new frontier for molecular histology. Histochem Cell Biol 130(3):421–434

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Schwartz SA, Reyzer ML, Caprioli RM (2003) Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J Mass Spectrom 38(7):699–708

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsutoshi Setou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Waki, M., Sugiyama, E., Kondo, T., Sano, K., Setou, M. (2015). Nanoparticle-Assisted Laser Desorption/Ionization for Metabolite Imaging. In: He, L. (eds) Mass Spectrometry Imaging of Small Molecules. Methods in Molecular Biology, vol 1203. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1357-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1357-2_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1356-5

  • Online ISBN: 978-1-4939-1357-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics