Skip to main content

Paxillin and Steroid Signaling: From Frog to Human

  • Protocol
  • First Online:
Steroid Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1204))

Abstract

Paxillin is a well-characterized cytoplasmic adaptor protein that is known to play important roles in cytoskeletal rearrangement, cell adhesion, and cell motility. In addition to its structural functions, paxillin has more recently been shown to function as a regulator of cell division—mediating steroid-triggered meiosis in oocytes as well as steroid- and growth factor-induced proliferation in prostate and breast cancer. Paxillin mediates these processes through a conserved pathway that involves both extranuclear (nongenomic) and nuclear (genomic) steroid signaling, as well as both cytoplasmic and nuclear kinase signaling. In fact, paxillin appears to serve as a critical liaison between extranuclear and nuclear signaling in response to multiple stimuli, making it a fascinating molecule to study when trying to determine how growth signals from the membrane lead to important proliferative changes in the nucleus. This chapter outlines recent advances in understanding how paxillin regulates both steroid and growth factor signaling, focusing on the conserved nature of its actions from a frog germ cell to a human cancer cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schaller MD (2001) Paxillin: a focal adhesion-associated adaptor protein. Oncogene 20:6459–6472

    Article  CAS  Google Scholar 

  2. Turner CE (2000) Paxillin and focal adhesion signalling. Nat Cell Biol 2:E231–E236

    Article  CAS  Google Scholar 

  3. Dobkin-Bekman M, Naidich M, Rahamim L et al (2009) A preformed signaling complex mediates GnRH-activated ERK phosphorylation of paxillin and FAK at focal adhesions in L beta T2 gonadotrope cells. Mol Endocrinol 23:1850–1864

    Article  CAS  Google Scholar 

  4. Ishibe S, Joly D, Liu ZX, Cantley LG (2004) Paxillin serves as an ERK-regulated scaffold for coordinating FAK and Rac activation in epithelial morphogenesis. Mol Cell 16:257–267

    Article  CAS  Google Scholar 

  5. Hagel M, George EL, Kim A, Tamimi R, Opitz SL, Turner CE, Imamoto A, Thomas SM (2002) The adaptor protein paxillin is essential for normal development in the mouse and is a critical transducer of fibronectin signaling. Mol Cell Biol 22:901–915

    Article  CAS  Google Scholar 

  6. Ishibe S, Joly D, Zhu X, Cantley LG (2003) Phosphorylation-dependent paxillin-ERK association mediates hepatocyte growth factor-stimulated epithelial morphogenesis. Mol Cell 12:1275–1285

    Article  CAS  Google Scholar 

  7. Guerrero-Santoro J, Yang L, Stallcup MR, DeFranco DB (2004) Distinct LIM domains of Hic-5/ARA55 are required for nuclear matrix targeting and glucocorticoid receptor binding and coactivation. J Cell Biochem 92:810–819

    Article  CAS  Google Scholar 

  8. Kasai M, Guerrero-Santoro J, Friedman R, Leman ES, Getzenberg RH, DeFranco DB (2003) The Group 3 LIM domain protein paxillin potentiates androgen receptor transactivation in prostate cancer cell lines. Cancer Res 63:4927–4935

    CAS  PubMed  Google Scholar 

  9. Albertini DF, Carabatsos MJ (1998) Comparative aspects of meiotic cell cycle control in mammals. J Mol Med 76:795–799

    Article  CAS  Google Scholar 

  10. Maller JL, Krebs EG (1980) Regulation of oocyte maturation. Curr Top Cell Regul 16:271–311

    Article  CAS  Google Scholar 

  11. Gill A, Jamnongjit M, Hammes SR (2004) Androgens promote maturation and signaling in mouse oocytes independent of transcription: a release of inhibition model for mammalian oocyte meiosis. Mol Endocrinol 18:97–104

    Article  CAS  Google Scholar 

  12. Jamnongjit M, Gill A, Hammes SR (2005) Epidermal growth factor receptor signaling is required for normal ovarian steroidogenesis and oocyte maturation. Proc Natl Acad Sci USA 102:16257–16261

    Article  CAS  Google Scholar 

  13. Lutz LB, Cole LM, Gupta MK, Kwist KW, Auchus RJ, Hammes SR (2001) Evidence that androgens are the primary steroids produced by Xenopus laevis ovaries and may signal through the classical androgen receptor to promote oocyte maturation. Proc Natl Acad Sci USA 98:13728–13733

    Article  CAS  Google Scholar 

  14. Lutz LB, Jamnongjit M, Yang WH, Jahani D, Gill A, Hammes SR (2003) Selective modulation of genomic and nongenomic androgen responses by androgen receptor ligands. Mol Endocrinol 17:1106–1116

    Article  CAS  Google Scholar 

  15. Lutz LB, Kim B, Jahani D, Hammes SR (2000) G protein beta gamma subunits inhibit nongenomic progesterone-induced signaling and maturation in Xenopus laevis oocytes. Evidence for a release of inhibition mechanism for cell cycle progression. J Biol Chem 275:41512–41520

    Article  CAS  Google Scholar 

  16. Sheng Y, Tiberi M, Booth RA, Ma C, Liu XJ (2001) Regulation of Xenopus oocyte meiosis arrest by G protein betagamma subunits. Curr Biol 11:405–416

    Article  CAS  Google Scholar 

  17. Gallo CJ, Hand AR, Jones TL, Jaffe LA (1995) Stimulation of Xenopus oocyte maturation by inhibition of the G-protein alpha S subunit, a component of the plasma membrane and yolk platelet membranes. J Cell Biol 130:275–284

    Article  CAS  Google Scholar 

  18. Deng J, Lang S, Wylie C, Hammes SR (2008) The Xenopus laevis isoform of G protein-coupled receptor 3 (GPR3) is a constitutively active cell surface receptor that participates in maintaining meiotic arrest in X. laevis oocytes. Mol Endocrinol 22:1853–1865

    Article  CAS  Google Scholar 

  19. Rios-Cardona D, Ricardo-Gonzalez RR, Chawla A, Ferrell JE Jr (2008) A role for GPRx, a novel GPR3/6/12-related G-protein coupled receptor, in the maintenance of meiotic arrest in Xenopus laevis oocytes. Dev Biol 317:380–388

    Article  CAS  Google Scholar 

  20. Ferrell JE Jr (1999) Xenopus oocyte maturation: new lessons from a good egg. Bioessays 21:833–842

    Article  Google Scholar 

  21. Gebauer F, Xu W, Cooper GM, Richter JD (1994) Translational control by cytoplasmic polyadenylation of c-mos mRNA is necessary for oocyte maturation in the mouse. EMBO J 13:5712–5720

    Article  CAS  Google Scholar 

  22. Stebbins-Boaz B, Hake LE, Richter JD (1996) CPEB controls the cytoplasmic polyadenylation of cyclin, Cdk2 and c-mos mRNAs and is necessary for oocyte maturation in Xenopus. EMBO J 15:2582–2592

    Article  CAS  Google Scholar 

  23. De Moor CH, Richter JD (1997) The Mos pathway regulates cytoplasmic polyadenylation in Xenopus oocytes. Mol Cell Biol 17:6419–6426

    Article  Google Scholar 

  24. Shibuya EK, Morris J, Rapp UR, Ruderman JV (1996) Activation of the Xenopus oocyte mitogen-activated protein kinase pathway by Mos is independent of Raf. Cell Growth Differ 7:235–241

    CAS  PubMed  Google Scholar 

  25. Mendez R, Hake LE, Andresson T, Littlepage LE, Ruderman JV, Richter JD (2000) Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature 404:302–307

    Article  CAS  Google Scholar 

  26. Martinez SE, Yuan L, Lacza C, Ransom H, Mahon GM, Whitehead IP, Hake LE (2005) XGef mediates early CPEB phosphorylation during Xenopus oocyte meiotic maturation. Mol Biol Cell 16:1152–1164

    Article  CAS  Google Scholar 

  27. Resing KA, Mansour SJ, Hermann AS, Johnson RS, Candia JM, Fukasawa K, Vande Woude GF, Ahn NG (1995) Determination of v-Mos-catalyzed phosphorylation sites and autophosphorylation sites on MAP kinase kinase by ESI/MS. Biochemistry 34:2610–2620

    Article  CAS  Google Scholar 

  28. Howard EL, Charlesworth A, Welk J, MacNicol AM (1999) The mitogen-activated protein kinase signaling pathway stimulates mos mRNA cytoplasmic polyadenylation during Xenopus oocyte maturation. Mol Cell Biol 19:1990–1999

    Article  CAS  Google Scholar 

  29. Nebreda AR, Gannon JV, Hunt T (1995) Newly synthesized protein(s) must associate with p34cdc2 to activate MAP kinase and MPF during progesterone-induced maturation of Xenopus oocytes. EMBO J 14:5597–5607

    Article  CAS  Google Scholar 

  30. Castro A, Peter M, Magnaghi-Jaulin L, Vigneron S, Galas S, Lorca T, Labbe JC (2001) Cyclin B/cdc2 induces c-Mos stability by direct phosphorylation in Xenopus oocytes. Mol Biol Cell 12:2660–2671

    Article  CAS  Google Scholar 

  31. Gotoh Y, Masuyama N, Dell K, Shirakabe K, Nishida E (1995) Initiation of Xenopus oocyte maturation by activation of the mitogen-activated protein kinase cascade. J Biol Chem 270:25898–25904

    Article  CAS  Google Scholar 

  32. Matten WT, Copeland TD, Ahn NG, Vande Woude GF (1996) Positive feedback between MAP kinase and Mos during Xenopus oocyte maturation. Dev Biol 179:485–492

    Article  CAS  Google Scholar 

  33. Roy LM, Haccard O, Izumi T, Lattes BG, Lewellyn AL, Maller JL (1996) Mos proto-oncogene function during oocyte maturation in Xenopus. Oncogene 12:2203–2211

    CAS  PubMed  Google Scholar 

  34. Liu ZX, Yu CF, Nickel C, Thomas S, Cantley LG (2002) Hepatocyte growth factor induces ERK-dependent paxillin phosphorylation and regulates paxillin-focal adhesion kinase association. J Biol Chem 277:10452–10458

    Article  CAS  Google Scholar 

  35. Rasar M, DeFranco DB, Hammes SR (2006) Paxillin regulates steroid-triggered meiotic resumption in oocytes by enhancing an all-or-none positive feedback kinase loop. J Biol Chem 281:39455–39464

    Article  CAS  Google Scholar 

  36. Sen A, Prizant H, Hammes SR (2011) Understanding extranuclear (nongenomic) androgen signaling: what a frog oocyte can tell us about human biology. Steroids 76:822–828

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sen A, O’Malley K, Wang Z, Raj GV, DeFranco DB, Hammes SR (2010) Paxillin regulates androgen- and epidermal growth factor-induced MAPK signaling and cell proliferation in prostate cancer cells. J Biol Chem 285:28787–28795

    Article  CAS  Google Scholar 

  38. Auricchio F, Migliaccio A, Castoria G (2008) Sex-steroid hormones and EGF signalling in breast and prostate cancer cells: targeting the association of Src with steroid receptors. Steroids 73:880–884

    Article  CAS  Google Scholar 

  39. Migliaccio A et al (2006) Crosstalk between EGFR and extranuclear steroid receptors. Ann N Y Acad Sci 1089:194–200

    Article  CAS  Google Scholar 

  40. Hammes SR, Levin ER (2007) Extranuclear steroid receptors: nature and actions. Endocr Rev 28:726–741

    Article  CAS  Google Scholar 

  41. Hammes SR, Levin ER (2011) Minireview: recent advances in extranuclear steroid receptor actions. Endocrinology 152:4489–4495

    Article  CAS  Google Scholar 

  42. Sen A, De Castro I, Defranco DB, Deng FM, Melamed J, Kapur P, Raj GV, Rossi R, Hammes SR (2012) Paxillin mediates extranuclear and intranuclear signaling in prostate cancer proliferation. J Clin Inv 122:2469–2481

    Article  CAS  Google Scholar 

  43. Rasar MA, Hammes SR (2006) The physiology of the Xenopus laevis ovary. Methods Mol Biol 322:17–30

    Article  CAS  Google Scholar 

  44. Pearce ST, Jordan VC (2004) The biological role of estrogen receptors alpha and beta in cancer. Crit Rev Onc Hem 50:3–22

    Article  Google Scholar 

  45. Brand TM, Iida M, Li C, Wheeler DL (2011) The nuclear epidermal growth factor receptor signaling network and its role in cancer. Discov Med 12:419–432

    PubMed  PubMed Central  Google Scholar 

  46. Voduc KD, Cheang MC, Tyldesley S, Gelmon K, Nielsen TO, Kennecke H (2010) Breast cancer subtypes and the risk of local and regional relapse. J Clin Oncol 28:1684–1691

    Article  Google Scholar 

  47. Li Y, Wang JP, Santen RJ, Kim TH, Park H, Fan P, Yue W (2010) Estrogen stimulation of cell migration involves multiple signaling pathway interactions. Endocrinology 151:5146–5156

    Article  CAS  Google Scholar 

  48. Williams C, Lin CY (2013) Oestrogen receptors in breast cancer: basic mechanisms and clinical implications. E Cancer Med Sci 7:370–378

    Google Scholar 

  49. Levin ER (2011) Minireview: extranuclear steroid receptors—roles in modulation of cell functions. Mol Endocrinol 25:377–384

    Article  CAS  Google Scholar 

  50. Razandi M, Pedram A, Rosen EM, Levin ER (2004) BRCA1 inhibits membrane estrogen and growth factor receptor signaling to cell proliferation in breast cancer. Mol Cell Biol 24:5900–5913

    Article  CAS  Google Scholar 

  51. Reddy KB, Glaros S (2007) Inhibition of the MAP kinase activity suppresses estrogen-induced breast tumor growth both in vitro and in vivo. Int J Oncol 30:971–975

    CAS  PubMed  Google Scholar 

  52. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182

    Article  CAS  Google Scholar 

  53. Short SM, Yoder BJ, Tarr SM et al (2007) The expression of the cytoskeletal focal adhesion protein paxillin in breast cancer correlates with HER2 overexpression and may help predict response to chemotherapy: a retrospective immunohistochemical study. Breast J 12:130–139

    Article  Google Scholar 

  54. Vadlamudi R, Adam L, Tseng B, Costa L, Kumar R (1999) Transcriptional up-regulation of paxillin expression by heregulin in human breast cancer cells. Cancer Res 59:2843–2846

    CAS  PubMed  Google Scholar 

  55. Deakin NO, Turner CE (2011) Distinct roles for paxillin and Hic-5 in regulating breast cancer cell morphology, invasion, and metastasis. Mol Biol Cell 22:327–341

    Article  CAS  Google Scholar 

  56. Chen J, Gallo KA (2012) MLK3 regulates paxillin phosphorylation in chemokine-mediated breast cancer cell migration and invasion to drive metastasis. Cancer Res 72:4130–4140

    Article  CAS  Google Scholar 

  57. Panousis D, Xepapadakis G, Lagoudianakis E et al (2013) Prognostic value of EZH2, paxillin expression and DNA ploidy of breast adenocarcinoma: correlation to pathologic predictors. J BUON 18:879–885

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. Hammes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hammes, S.R., Miedlich, S.U., Sen, A. (2014). Paxillin and Steroid Signaling: From Frog to Human. In: Castoria, G., Auricchio, F. (eds) Steroid Receptors. Methods in Molecular Biology, vol 1204. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-1346-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1346-6_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-1345-9

  • Online ISBN: 978-1-4939-1346-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics